摘要:
A storage device includes a nonvolatile memory device and a controller configured to generate a read command according to a request of an external host device and transmit the read command to the nonvolatile memory device. The nonvolatile memory device is configured to perform a read operation in response to the read command, to output read data to the controller, and to store information of the read operation in an internal register.
摘要:
Memory devices and program methods thereof, the memory devices including a memory cell array with a three-dimensional structure, a voltage generator configured to supply a pass voltage and a program voltage to the memory cell array, and a control logic configured to make the rising slope of the pass voltage variable with a program loop during a program operation. The memory device may improve a program speed by adjusting the rising slope of the pass voltage according to the program loop.
摘要:
A nonvolatile memory device includes a 3D memory cell array having words lines that extend from a lowest memory cell array layer closest to a substrate to a highest memory cell array layer farthest from the substrate, a voltage generator circuit generating first and second voltage signals, and a row selecting circuit that simultaneously applies the first voltage signal to a selected word line and the second voltage signal to an unselected word line. The selected word line and the unselected word line have different resistances, yet the first voltage signal is applied to the selected word line and the second voltage signal is applied to the unselected word line with a same rising slope over a defined period of time.
摘要:
Disclosed is a nonvolatile memory device which includes a 3D memory cell array having words lines that extend from a lowest memory cell array layer closest to a substrate to a highest memory cell array layer farthest from the substrate, a voltage generator circuit generating first and second voltage signals, and a row selecting circuit that simultaneously applies the first voltage signal to a selected word line and the second voltage signal to an unselected word line. The selected word line and the unselected word line have different resistances, yet the first voltage signal is applied to the selected word line and the second voltage signal is applied to the unselected word line with a same rising slope over a defined period of time.
摘要:
Nonvolatile memory devices including memory cell arrays with a plurality of cell strings connected between a substrate and a plurality of bit lines and selected by selection lines, and a gating circuit configured to drive the selection lines in at least two directions.
摘要:
Nonvolatile memory devices including memory cell arrays with a plurality of cell strings connected between a substrate and a plurality of bit lines and selected by selection lines, and a gating circuit configured to drive the selection lines in at least two directions.
摘要:
Disclosed is a method of producing a carrier catalyst for a use in acrolein oxidation reaction. Metallic salt components of the catalyst including molybdate, vanadate and tungstate are dissolved in water. An additional metallic salt component of the catalyst is added to the aqueous solution of the salts to form a suspension of the catalyst. In the suspension, the total weight of water is about 0.8 to about 5 times of the total weight of the metallic salts in the catalyst. This method of preparing suspension minimizes the amount of water required to dissolve the metallic salts, which reduces the amount of time and energy to be used in evaporating water from the suspension in the following step of obtaining catalyst. Additionally, in obtaining catalyst from the suspension prepared by this method, it is possible to avoid the deterioration of the catalytic performance since less heat is required to evaporate the water. Disclosed also is a method of producing a carrier-retained catalyst. Catalyst particles suspended in the water are split or ground into smaller particles to maintain homogeneous suspension. The suspension is sprayed to an inert carrier while applying heated air flow to remove water and obtain a carrier-retained catalyst.
摘要:
According to example embodiments, a nonvolatile memory device includes a first and a second NAND string. The first NAND string includes a first string selection transistor, a first local ground and a first global ground selection transistor, and first memory cells stacked in a direction perpendicular to a substrate. The second NAND string includes a second string selection transistor, a second local ground and a second global ground selection transistor, and second memory cells stacked in the direction perpendicular to the substrate. The device includes a selection line driver including path transistors configured to select and provide at least one operation voltage to the first and second string selection transistors, the first and second local and global ground selection transistors. The first and second string selection transistors are electrically isolated from each other, and the first and second global ground selection transistors are electrically connected.
摘要:
Nonvolatile memory devices including memory cell arrays with a plurality of cell strings connected between a substrate and a plurality of bit lines and selected by selection lines, and a gating circuit configured to drive the selection lines in at least two directions.
摘要:
A method of coating a catalyst to a support for use in acrolein oxidation reaction. Metallic salt components of the catalyst including molybdate, vanadate and tungstate are dissolved in a liquid to form a suspension of particles of the catalyst. The precipitation of the catalyst particles is controlled by homogenizing the catalyst particles suspended in the liquid. The phase separation between the catalyst particles and the liquid can be substantially slowed down by the homogenization. Then the catalyst is coated on an inert support by applying the suspension of the catalyst particles to the support. In the suspension, the total weight of water is about 0.8 to about 5 times of the total weight of the metallic salts in the catalyst. This method of preparing suspension minimizes the amount of the liquid required to dissolve the metallic salts, which reduces the amount of time and energy to be used in evaporating the liquid from the suspension. Additionally, in obtaining catalyst from the suspension prepared by this method, it is possible to avoid the deterioration of the catalytic performance since less heat is required to evaporate the water.