Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
Abstract:
A semiconductor device includes a gate stack formed on an active region in a p-type field effect transistor (pFET) portion of a silicon-on-insulator (SOI) substrate. The SOI substrate includes a n-type field effect transistor (nFET) portion. A gate spacer is formed over the gate stack. A source region and a drain region are formed within a first region and a second region, respectively, of the pFET portion of the semiconductor layer including embedded silicon germanium (eSiGe). A source region and a drain region are formed within a first region and a second region, respectively, of the nFET portion of the semiconductor layer including eSiGe. The source and drain regions within the pFET portion includes at least one dimension that is different from at least one dimension of the source and drain regions within the nFET portion.
Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
Abstract:
A method for fabricating a semiconductor device includes forming a gate stack on an active region of a silicon-on-insulator substrate. The active region is within a semiconductor layer and is doped with an p-type dopant. A gate spacer is formed surrounding the gate stack. A first trench is formed in a region reserved for a source region and a second trench is formed in a region reserved for a drain region. The first and second trenches are formed while maintaining exposed the region reserved for the source region and the region reserved for the drain region. Silicon germanium is epitaxially grown within the first trench and the second trench while maintaining exposed the regions reserved for the source and drain regions, respectively.
Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
Abstract:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.