Abstract:
Techniques for thermal management of a device under test are discussed. In an example, an apparatus may include a pedestal having a device-specific surface configured to exchange heat with the integrated circuit while the device-specific surface is in contact with a surface of the integrated circuit or separated from the surface of the integrated circuit by a layer of thermally conductive material, and a heat generating element configured to heat the device-specific surface. In certain examples, the pedestal may include a plurality of channels configured to couple to a manifold and to route thermal material from the manifold through an interior of the pedestal for maintaining temperature control of the surface of an integrated circuit under test.
Abstract:
A method includes identifying a wafer position for a plurality of die on a wafer, storing the wafer position for each of the plurality of die in a database, dicing the wafer into a plurality of singulated die, positioning each of the singulated die in a die position location on a tray, and storing the die position on the tray for each of the singulated die in the database. The database includes information including the wafer position associated with each die position. The tray is transported to a processing tool, and at least one of the plurality of singulated die is removed from the die position on the tray and processed in the processing tool. The processed singulated die is replaced in the same defined location on the tray that the singulated die was positioned in prior to the processing. Other embodiments are described and claimed.
Abstract:
A heat spreader apparatus, testing system, method may be used to test an electronic device. The heat spreader may include a hollow housing. The hollow housing may define an interior chamber. The hollow housing may include a contact surface. The heat spreader may include a working fluid. The working fluid may be included in the interior chamber. The hollow housing may be configured to be physically compliant. The hollow housing may be physically compliant such that the hollow housing conforms to the shape of a testing surface in response to an applied pressure. The testing surface may be a top surface of a semiconductor. The testing surface may be curved or otherwise lack uniformity. The hollow housing may conform to the curvature or lack of uniformity of the testing surface such that minimal gaps exist between the hollow housing and the surface.
Abstract:
Techniques for thermal management of a device under test are discussed. In an example, an apparatus may include a pedestal having a device-specific surface configured to exchange heat with the integrated circuit while the device-specific surface is in contact with a surface of the integrated circuit or separated from the surface of the integrated circuit by a layer of thermally conductive material, and a heat generating element configured to heat the device-specific surface. In certain examples, the pedestal may include a plurality of channels configured to couple to a manifold and to route thermal material from the manifold through an interior of the pedestal for maintaining temperature control of the surface of an integrated circuit under test.
Abstract:
A heat spreader apparatus, testing system, method may be used to test an electronic device. The heat spreader may include a hollow housing. The hollow housing may define an interior chamber. The hollow housing may include a contact surface. The heat spreader may include a working fluid. The working fluid may be included in the interior chamber. The hollow housing may be configured to be physically compliant. The hollow housing may be physically compliant such that the hollow housing conforms to the shape of a testing surface in response to an applied pressure. The testing surface may be a top surface of a semiconductor. The testing surface may be curved or otherwise lack uniformity. The hollow housing may conform to the curvature or lack of uniformity of the testing surface such that minimal gaps exist between the hollow housing and the surface.
Abstract:
A method includes identifying a wafer position for a plurality of die on a wafer, storing the wafer position for each of the plurality of die in a database, dicing the wafer into a plurality of singulated die, positioning each of the singulated die in a die position location on a tray, and storing the die position on the tray for each of the singulated die in the database. The database includes information including the wafer position associated with each die position. The tray is transported to a processing tool, and at least one of the plurality of singulated die is removed from the die position on the tray and processed in the processing tool. The processed singulated die is replaced in the same defined location on the tray that the singulated die was positioned in prior to the processing. Other embodiments are described and claimed.
Abstract:
A thermal controller includes a thermal control interface to receive test data from an automated test equipment (ATE) system and dynamically adjust a target setpoint temperature based on the data and a dynamic thermal controller to receive the target setpoint temperature from the thermal control interface and control a thermal actuator based on the target setpoint temperature.
Abstract:
A method includes identifying a wafer position for a plurality of die on a wafer, storing the wafer position for each of the plurality of die in a database, dicing the wafer into a plurality of singulated die, positioning each of the singulated die in a die position location on a tray, and storing the die position on the tray for each of the singulated die in the database. The database includes information including the wafer position associated with each die position. The tray is transported to a processing tool, and at least one of the plurality of singulated die is removed from the die position on the tray and processed in the processing tool. The processed singulated die is replaced in the same defined location on the tray that the singulated die was positioned in prior to the processing. Other embodiments are described and claimed.
Abstract:
A system includes a processor and a phased array, coupled to the processor, having an arrayed waveguide for acoustic waves to enable directional sound communication.
Abstract:
A system includes a processor and a phased array, coupled to the processor, having an arrayed waveguide for acoustic waves to enable directional sound communication.