Abstract:
Apparatus, systems, and methods to implement dynamic memory management in nonvolatile memory devices are described. In one example, a controller comprises logic to monitor at least one performance parameter of a nonvolatile memory, determine when the at least one performance parameter passes a threshold which indicates a degradation in performance for the nonvolatile memory, and in response to the at least one performance parameter passing the threshold, to modify at least one operational attribute of the nonvolatile memory. Other examples are also disclosed and claimed.
Abstract:
Techniques are disclosed for programming memory devices such as solid-state drives. In an embodiment, a memory controller is configured to execute a programming sequence that interleaves coarse and fine tuning steps for neighboring word lines. In one example, three consecutive word lines are programmed in six steps. At step 1, word line n is coarse programmed to an intermediate voltage level; at step 2, word line n+1 is coarse programmed to an intermediate voltage level; at step 3, word line n is fine programmed to its target voltage level; at step 4, word line n+2 is coarse programmed to an intermediate voltage level; at step 5, word line n+1 is fine programmed to its target voltage level; at step 6, word line n+2 is fine programmed to its target voltage level. No reads are allowed until all cell levels are programmed. Phase change memory may be used as staging buffer.
Abstract:
Reduction of program disturb degradation in a flash memory cell array is facilitated by selectively switching wordline voltage levels in a sequence that reduces the likelihood of trapping electrons in memory cell channels. During a program verify operation for a memory cell in a memory cell string, a flash memory system switches wordline voltage levels from high-to-low for interface wordlines, prior to switching wordline voltages from high-to-low for other wordlines in a memory cell string. Selectively switching wordlines in a sequence in the memory cell string enables electrons to migrate to ground or to a source voltage through upper and lower select gates.
Abstract:
Reduction of program disturb degradation in a flash memory cell array is facilitated by selectively switching wordline voltage levels in a sequence that reduces the likelihood of trapping electrons in memory cell channels. During a program verify operation for a memory cell in a memory cell string, a flash memory system switches wordline voltage levels from high-to-low for interface wordlines, prior to switching wordline voltages from high-to-low for other wordlines in a memory cell string. Selectively switching wordlines in a sequence in the memory cell string enables electrons to migrate to ground or to a source voltage through upper and lower select gates.
Abstract:
A system for facilitating multiple concurrent page reads in a memory array is provided. Memory cells that have multiple programming states (e.g., store multiple bits per cell) rely on various control gate and wordline voltages levels to read the memory cells. Therefore, to concurrently read multiple pages of memory cells, where each page includes one or more different programming levels, a memory controller includes first wordline control logic that includes a first voltage regulator and includes second wordline control logic that includes a second voltage regulator, according to one embodiment. The two voltage regulators enable the memory controller to concurrently address and access multiple pages of memory at different programming levels, in response to memory read requests, according to one embodiment.