摘要:
A memory interface latch including a data NAND gate and a feedback gate can be created within an integrated circuit (IC). When a feedback node is driven low, the data NAND gate can drive an inverted value of a memory array bitline input to a data output of the memory interface latch within a time of one gate delay. A feedback gate can, in a functional mode, during one phase of a clock signal, drive the feedback node high and during the other phase of the clock signal, drive the feedback node to a complement the data output. The feedback gate can be also, in an LBIST write-through mode, drive the feedback node to the value of a WRITE_DATA input. The feedback gate can be also, in a fence mode, drive the feedback node to fixed logic value.
摘要:
A memory interface latch including a data NAND gate and a feedback gate can be created within an integrated circuit (IC). When a feedback node is driven low, the data NAND gate can drive an inverted value of a memory array bitline input to a data output of the memory interface latch within a time of one gate delay. A feedback gate can, in a functional mode, during one phase of a clock signal, drive the feedback node high and during the other phase of the clock signal, drive the feedback node to a complement the data output. The feedback gate can be also, in an LBIST write-through mode, drive the feedback node to the value of a WRITE_DATA input. The feedback gate can be also, in a fence mode, drive the feedback node to fixed logic value.
摘要:
A memory interface latch including a data NAND gate and a feedback gate can be created within an integrated circuit (IC). When a feedback node is driven low, the data NAND gate can drive an inverted value of a memory array bitline input to a data output of the memory interface latch within a time of one gate delay. A feedback gate can, in a functional mode, during one phase of a clock signal, drive the feedback node high and during the other phase of the clock signal, drive the feedback node to a complement the data output. The feedback gate can be also, in an LBIST write-through mode, drive the feedback node to the value of a WRITE_DATA input. The feedback gate can be also, in a fence mode, drive the feedback node to fixed logic value.
摘要:
A method and circuit for implementing sense amplifiers for sensing local write driver with bootstrap write assist for Static Random Access Memory (SRAM) arrays, and a design structure on which the subject circuit resides are provided. The circuit includes a sense amplifier used in both read and write operations with a write assist boost circuitry. The sense amplifier captures and amplifies write data at a selected SRAM cell column and drives the write data onto local bit lines. The write assist boost circuitry temporarily supplies an increased device voltage differential to the SRAM cell during write operations to significantly increase SRAM cell write ability.
摘要:
A semiconductor chip and method for diagnostic testing of combinational logic in a logic and array system including Logic Built in Self Test (LBIST) diagnostics are provided. The semiconductor chip includes a logic and array system, an LBIST system, a clocking module, and an addressing module. The method for diagnostic testing includes providing an initialization pattern to an array in the logic and array system, applying a diagnostic control setup, and running the diagnostic test. The diagnostic control setup includes firing a clock every diagnostic test clock cycle and selecting an address from a subset of an address space.
摘要:
Rows of a memory array are segmented into a predetermined number of word line groups. Each row in a word line group has a word line disposed between parallel power supply lines. Each of the power supply lines in a row of a word line group is shared by an adjacent row in the word line group. A row on a boundary of a word line group has a power supply line shared by a row on a boundary of an adjacent word line group. All power supply lines in a word line group are at a full power voltage in response to one of the rows in the word line group being selected by a word line. Most power supply lines in an adjacent word line group are at a full power voltage. All power supply lines in other word line groups are at a power-gated voltage.
摘要:
A memory interface latch including a data NAND gate and a feedback gate can be created within an integrated circuit (IC). When a feedback node is driven low, the data NAND gate can drive an inverted value of a memory array bitline input to a data output of the memory interface latch within a time of one gate delay. A feedback gate can, in a functional mode, during one phase of a clock signal, drive the feedback node high and during the other phase of the clock signal, drive the feedback node to a complement the data output. The feedback gate can be also, in an LBIST write-through mode, drive the feedback node to the value of a WRITE_DATA input. The feedback gate can be also, in a fence mode, drive the feedback node to fixed logic value.
摘要:
A deep sleep wakeup signal is received at a first memory bank. A first gated memory array supply voltage is increased in response to the receiving the deep sleep wakeup signal at the first memory bank. The first memory array supply voltage is applied to a first memory array. The deep sleep wakeup signal is forwarded to a second memory bank in response to determining the first gated memory array supply voltage has reached a specified voltage.
摘要:
A deep sleep wakeup signal is received at a first memory bank. A first gated memory array supply voltage is increased in response to the receiving the deep sleep wakeup signal at the first memory bank. The first memory array supply voltage is applied to a first memory array. The deep sleep wakeup signal is forwarded to a second memory bank in response to determining the first gated memory array supply voltage has reached a specified voltage.
摘要:
Rows of a memory array are segmented into a predetermined number of word line groups. Each row in a word line group has a word line disposed between parallel power supply lines. Each of the power supply lines in a row of a word line group is shared by an adjacent row in the word line group. A row on a boundary of a word line group has a power supply line shared by a row on a boundary of an adjacent word line group. All power supply lines in a word line group are at a full power voltage in response to one of the rows in the word line group being selected by a word line. Most power supply lines in an adjacent word line group are at a full power voltage. All power supply lines in other word line groups are at a power-gated voltage.