摘要:
Provided is a double gate field effect transistor and a method of manufacturing the same. The method of manufacturing the double gate field effect transistor comprises forming as many fins as required by etching a silicon substrate, masking the resultant product by an insulating material such as silicon nitride, forming trench regions for device isolation and STI film by using the silicon nitride mask, forming gate oxide films on both faces of the fins after removing the hard mask, and forming a gate line. As such, unnecessary channel formation under the silicon oxide film, when a voltage higher than a threshold voltage is applied to the substrate, is prevented by forming a thick silicon oxide film on the substrate on which no protruding fins are formed.
摘要:
Provided is a double gate field effect transistor and a method of manufacturing the same. The method of manufacturing the double gate field effect transistor comprises forming as many fins as required by etching a silicon substrate, masking the resultant product by an insulating material such as silicon nitride, forming trench regions for device isolation and STI film by using the silicon nitride mask, forming gate oxide films on both faces of the fins after removing the hard mask, and forming a gate line. As such, unnecessary channel formation under the silicon oxide film, when a voltage higher than a threshold voltage is applied to the substrate, is prevented by forming a thick silicon oxide film on the substrate on which no protruding fins are formed.
摘要:
Provided is a double gate field effect transistor and a method of manufacturing the same. The method of manufacturing the double gate field effect transistor includes forming as many fins as required by etching a silicon substrate, masking the resultant product by an insulating material such as silicon nitride, forming trench regions for device isolation and STI film by using the silicon nitride mask, forming gate oxide films on both faces of the fins after removing the hard mask, and forming a gate line. As such, unnecessary channel formation under the silicon oxide film, when a voltage higher than a threshold voltage is applied to the substrate, is prevented by forming a thick silicon oxide film on the substrate on which no protruding fins are formed.
摘要:
Provided is a double gate field effect transistor and a method of manufacturing the same. The method of manufacturing the double gate field effect transistor comprises forming as many fins as required by etching a silicon substrate, masking the resultant product by an insulating material such as silicon nitride, forming trench regions for device isolation and STI film by using the silicon nitride mask, forming gate oxide films on both faces of the fins after removing the hard mask, and forming a gate line. As such, unnecessary channel formation under the silicon oxide film, when a voltage higher than a threshold voltage is applied to the substrate, is prevented by forming a thick silicon oxide film on the substrate on which no protruding fins are formed.
摘要:
A semiconductor device is manufactured by forming trenches in a substrate and selectively performing Plasma Ion Immersion Implantation and Deposition (PIIID) on a subset of the trenches in the substrate. The PIIID may be performed on only a portion of a surface of at least one of the trenches in the substrate. Semiconductor devices can include a semiconductor substrate having first, second and third trenches therein, and an oxide liner layer that fully lines the first trenches, that does not line the second trenches and that partially lines the third trenches.
摘要:
A plasma doping method includes providing a substrate including a layer to be doped inside a chamber, and supplying first and second source gases to the layer to achieve a desired doping concentration. The first source gas includes a component configured to increase a thickness of the layer, and the second gas includes a component configured to reduce a thickness of the layer.
摘要:
A method of fabricating a semiconductor device using a trench isolation method including a hydrogen annealing step, wherein a photoresist pattern is formed on a semiconductor substrate, a pad insulating layer may be formed before forming the photoresist pattern, the semiconductor substrate is etched using the photoresist pattern as an etching mask to form a trench, and an isolation layer is formed in the trench. To remove damages created in an active region defined by the isolation layer, the semiconductor substrate having the isolation layer is annealed in a hydrogen atmosphere.
摘要:
Methods of manufacturing a semiconductor device, which can reduce hot electron induced punchthrough (HEIP) and/or improve the operating characteristics of the device include selectively forming an oxynitride layer in a device isolation layer according to the characteristics of transistors isolated by the device isolation layer. The methods include forming first trenches and second trenches on a substrate, forming an oxide layer on the surfaces of the first trenches and the second trenches, selectively forming an oxynitride layer on the second trenches by using plasma ion immersion implantation (PIII), and forming a buried insulating layer in the first trenches and the second trenches. The buried insulating layer may be planarized to form a first device isolation layer in the first trenches and a second device isolation layer in the second trenches.
摘要:
Trench isolation methods for integrated circuits may reduce irregularities in the formation of an isolation layer through use of a high selectivity chemical-mechanical polishing (CMP) operation. In particular, a substrate surface is etched to form a trench. An insulation layer is then formed on the substrate surface and in the trench. The insulation layer is chemical-mechanical polished using a slurry that includes a CeO2 group abrasive to form an isolation layer in the trench. The CMP selectivity ratio of a slurry that includes a CeO2 group abrasive may be sufficient to allow the substrate surface to be used as a CMP stop. As a result, a more consistent level of polishing may be maintained over the substrate surface, which may result in a more uniform thickness in the isolation layer.
摘要:
A trench isolation structure which prevents a hump phenomenon and an inverse narrow width effect of transistors by rounding the top edges of a trench and increasing the amount of oxidation at the top edges of a trench, a semiconductor device having the trench isolation structure, and a trench isolation method are provided. In this trench isolation method, a trench is formed in non-active regions of a semiconductor substrate. An inner wall oxide film having a thickness of 10 to 150 Å is formed on the inner wall of the trench. A liner is formed on the surface of the inner wall oxide film. The trench is filled with a dielectric film. Part of the liner is etched so that the top ends of the silicon nitride liner are recessed from the surface of the semiconductor substrate.