摘要:
A method of coating a substrate comprises the steps of: (a) providing a substrate in an enclosed vessel, the substrate having a surface portion; (b) at least partially filling the enclosed vessel with a first supercritical fluid so that said first supercritical fluid contacts the surface portion, with the first supercritical fluid carrying or containing a coating component; then (c) adding a separate compressed gas atmosphere to the reaction vessel so that a boundary is formed between the first supercritical fluid and the separate compressed gas atmosphere, said separate compressed gas atmosphere having a density less than said first supercritical fluid; and then (d) displacing said first supercritical fluid from said vessel by continuing adding said separate compressed gas atmosphere to said vessel so that said boundary moves across said surface portion and a thin film of coating component is deposited on said microelectronic substrate.
摘要:
A method of coating a substrate comprises the steps of: (a) providing a substrate in an enclosed vessel, the substrate having a surface portion; (b) at least partially filling the enclosed vessel with a first supercritical fluid so that said first supercritical fluid contacts the surface portion, with the first supercritical fluid carrying or containing a coating component; then (c) adding a separate compressed gas atmosphere to the reaction vessel so that a boundary is formed between the first supercritical fluid and the separate compressed gas atmosphere, said separate compressed gas atmosphere having a density less than said first supercritical fluid; and then (d) displacing said first supercritical fluid from said vessel by continuing adding said separate compressed gas atmosphere to said vessel so that said boundary moves across said surface portion and a thin film of coating component is deposited on said microelectronic substrate.
摘要:
Compositions useful for cleaning metal from a substrate or coating metal onto a substrate are described: Such compositions comprise (a) a densified carbon dioxide continuous phase; (b) a polar discrete phase in said carbon dioxide continuous phase; (c) a metal in said discrete phase (i.e., a metal removed from the substrate, or to be coated onto the substrate); (d) at least one ligand in said continuous phase, said discrete phase, or both said continuous and said discrete phase.
摘要:
A method of cleaning a microelectronic substrate is carried out by providing a cleaning fluid, the cleaning fluid comprising an adduct of hydrogen fluoride with a Lewis base in a carbon dioxide solvent; and then cleaning the substrate by contacting the substrate to the cleaning fluid for a time sufficient to clean the substrate.
摘要:
A method of treating a dielectric surface portion of a semiconductor substrate, comprising the steps of: (a) providing a semiconductor substrate having a dielectric surface portion; and then (b) treating said dielectric surface portion with a coating reagent, the coating reagent comprising a reactive group coupled to a coordinating group, with the coordinating group having a metal bound thereto, so that the metal is deposited on the dielectric surface portion to produce a surface portion treated with a metal.
摘要:
A method of displacing a supercritical fluid from a pressure vessel (e.g., in a microelectronic manufacturing process), with the steps of: providing an enclosed pressure vessel containing a first supercritical fluid (said supercritical fluid preferably comprising carbon dioxide); adding a second fluid (typically also a supercritical fluid) to said vessel, with said second fluid being added at a pressure greater than the pressure of the first supercritical fluid, and with said second fluid having a density less than that of the first supercritical fluid; forming an interface between the first supercritical fluid and the second fluid; and displacing at least a portion of the first supercritical fluid from the vessel with the pressure of the second, preferably fluid while maintaining the interface therebetween.
摘要:
A method of cleaning and removing water and entrained solutes during a manufacturing process from a microelectronic device such as a resist-coated semiconductor substrate, a MEM's device, or an optoelectronic device comprising the steps of: (a) providing a partially fabricated integrated circuit, MEM's device, or optoelectronic device having water and entrained solutes on the substrate; (b) providing a densified (e.g., liquid or supercritical) carbon dioxide drying composition, the cleaning composition comprising carbon dioxide, water, and, optionally but preferably, a cleaning adjunct; (c) immersing the surface portion in the densified carbon dioxide cleaning composition; and then (d) removing the cleaning composition from the surface portion.
摘要:
A method of cleaning and removing water and entrained solutes during a manufacturing process from a microelectronic device such as a resist-coated semiconductor substrate, a MEM's device, or an optoelectronic device comprising the steps of: (a) providing a partially fabricated integrated circuit, MEM's device, or optoelectronic device having water, entrained solutes, and/or solid particles or the like on the substrate; (b) providing a densified (e.g., liquid or supercritical) carbon dioxide cleaning composition, the drying composition comprising carbon dioxide and, optionally but preferably, a cleaning adjunct; (c) immersing the surface portion in the densified carbon dioxide cleaning composition; and then (d) removing the cleaning composition from the surface portion.
摘要:
Microelectronic substrate processing systems include a microelectronic substrate processing chamber that is configured to contain therein at least one microelectronic substrate. A carbon dioxide supply system is configured to supply densified carbon dioxide to the microelectronic substrate processing chamber. A detergent supply system is configured to supply detergent to the microelectronic substrate processing chamber.
摘要:
A method of cleaning and removing water and entrained solutes during a manufacturing process from a microelectronic device such as a resist-coated semiconductor substrate, a MEM's device, or an optoelectronic device comprising the steps of: (a) providing a partially fabricated integrated circuit, MEM's device, or optoelectronic device having water and entrained solutes on the substrate; (b) providing a densified (e.g., liquid or supercritical) carbon dioxide drying composition, the drying composition comprising carbon dioxide and a drying adjunct, the drying adjunct selected from the group consisting of cosolvents, surfactants, and combinations thereof; (c) immersing the surface portion in the densified carbon dioxide drying composition; and then (d) removing the drying composition from the surface portion. Process parameters are controlled so that the drying composition is maintained as a homogeneous composition during the immersing step, the removing step, or both the immersing and removing step, without substantial deposition of the drying/cleaning adjunct or entrained solutes on the substrate.