摘要:
A semiconductor substrate is heated via exposure to ultraviolet radiation substantially in the absence of a halogen containing chemical and subsequently exposed to a halogen-containing gas in the absence of ultraviolet radiation to remove contaminants therefrom.
摘要:
The apparatus of the present invention provides for the dual use of a UV source to heat a substrate and to facilitate photochemistry necessary for the treatment of the substrate. The present invention also provides a method for processing a substrate by heating the substrate to a temperature above ambient via UV radiation at a first power level and conditioning the substrate by exposing the substrate to a photochemically (UV) reactive chemical, or a reactive chemical that can react with a compound on the surface of the substrate to form a photochemically reactive compound, in the presence of UV radiation at a second power level.
摘要:
The present invention relates to cleaning processes for semiconductor substrates. More particularly, the present inventive method can provide enhanced particle removal efficiencies at a given material loss. In fact, in certain embodiments, the present method can achieve particle removal efficiencies of at least about 90%, while yet removing less than about 2 angstroms of any oxide present on the semiconductor substrate. As such, the present methods find particular applicability in the processing of advanced technology nodes.
摘要:
A method for treating a microelectronics substrate to produce a surface with improved characteristics for subsequent processing. The substrate is treated with HF, IPA, and an inert gas in a narrow range of conditions to remove unwanted oxide layers. The resulting surface is useful for processes like epitaxial deposition which benefit from a clean silicon surface with a low oxygen content.
摘要:
The present invention provides improvements to the use of silyating agents in semiconductor processing. More particularly, the silyating agents may be provided in combination with a substantially non-flammable ether, so that the combination is substantially non-flammable. Additionally, the silyating agent may be utilized in vapor form, or applied in conjunction with the electromagnetic radiation. Each of these embodiments can enhance the usability of the silyating agent, i.e., by rendering the silyating agent more safe, more easily utilized in a variety of processing equipment and/or by enhancing the passivation efficacy/efficiency of the silyating agent.
摘要:
The apparatus of the present invention provides for the dual use of a UV source to heat a substrate and to facilitate photochemistry necessary for the treatment of the substrate. The present invention also provides a method for processing a substrate by heating the substrate to a temperature above ambient via UV radiation at a first power level and conditioning the substrate by exposing the substrate to a photochemically (UV) reactive chemical, or a reactive chemical that can react with a compound on the surface of the substrate to form a photochemically reactive compound, in the presence of UV radiation at a second power level.
摘要:
The apparatus of the present invention provides for the dual use of a UV source to heat a substrate and to facilitate photochemistry necessary for the treatment of the substrate.The present invention also provides a method for processing a substrate by heating the substrate to a temperature above ambient via UV radiation at a first power level and conditioning the substrate by exposing the substrate to a photochemically (UV) reactive chemical, or a reactive chemical that can react with a compound on the surface of the substrate to form a photochemically reactive compound, in the presence of UV radiation at a second power level.