Abstract:
Provided is an optical transceiver module of an optical transceiver, which is used for optical communications. The optical transceiver module prevents electrical crosstalk between a light source and a light receiver. Additionally, the optical transceiver module includes an optical transceiver unit including a light source and a light receiver together integrated into a substrate, a circuit unit including a drive circuit driving the light source and a detect circuit reading a signal of the light receiver, and a crosstalk prevention unit connected between the substrate and ground to prevent electrical crosstalk between the light source and the light receiver.
Abstract:
Provided is an optical transceiver module of an optical transceiver, which is used for optical communications. The optical transceiver module prevents electrical crosstalk between a light source and a light receiver. Additionally, the optical transceiver module includes an optical transceiver unit including a light source and a light receiver together integrated into a substrate, a circuit unit including a drive circuit driving the light source and a detect circuit reading a signal of the light receiver, and a crosstalk prevention unit connected between the substrate and ground to prevent electrical crosstalk between the light source and the light receiver.
Abstract:
Provided is a waveguide photodetector including: a first clad layer disposed on a substrate; a core layer disposed on the first clad layer and for absorbing predetermined light; a second clad layer disposed on the core layer; and at least one subsidiary layer inserted in the first clad layer and the second clad layer. In this structure, the photodetector has about the same spot size as that of an optical fiber or planar lightwave circuit (PLC), so that incident light can be absorbed without loss, and the photodetector can more efficiently combine with the optical fiber or PLC and operate even at high power.
Abstract:
A waveguide PIN photodiode is provided. The waveguide PIN photodiode includes a lower light guide layer, a light absorption layer, an upper light guide layer, and a cladding layer. The lower light guide is formed on a substrate, and the light absorption layer is formed on the lower light guide layer. The upper light guide layer is formed on the light absorption layer, and the cladding layer is formed on the upper light guide layer. The lower light guide layer, the light absorption layer, and the upper light guide layer constitute a core layer, which is an optical waveguide, and graded index distribution is symmetrically formed in a depth direction, centering around the light absorption layer having a highest refractive index.
Abstract:
There are provided a semiconductor light emitting device that can be manufactured by a simple process and has excellent light extraction efficiency and a method of manufacturing a semiconductor light emitting device that has high reproducibility and high throughput. A semiconductor light emitting device having a substrate and a lamination in which a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer are sequentially laminated onto the substrate according to an aspect of the invention includes a silica particle layer; and an uneven part formed at a lower part of the silica particle layer.
Abstract:
An absorption modulator is provided. The absorption modulator includes a substrate, an insulation layer disposed on the substrate, and a waveguide having a P-I-N diode structure on the insulation layer. Absorptance of an intrinsic region in the P-I-N diode structure is varied when modulating light inputted to the waveguide. The absorption modulator obtains the improved characteristics, such as high speed, low power consumption, and small size, because it greatly reduces the cross-sectional area of the P-I-N diode structure.
Abstract:
An eye protective cover capable of supporting multi-purpose contents is disclosed. The cover includes front and back covers (20 and 30) which are foldably coupled to each other by a main coupling part (10). Front and back collapsing covers (25 and 35) are coupled, respectively, to upper surfaces of the front and back covers (20 and 30) by separation lines (25a and 35a) in such a way as to overlap the front and back covers (20 and 30). An angle holding unit is provided between the front or back cover (20 or 30) and the corresponding front or back collapsing cover (25 or 35) to hold an angle between the front or back cover (20 or 30) and the corresponding front or back collapsing cover (25 or 35).
Abstract:
The invention relates to a printed circuit board having metal bumps which are of even heights and are directly connected to a circuit pattern without using additional bump pads thus allowing an arrangement thereof at fine pitches.
Abstract:
An electro-optic device is provided. The electro-optic device includes a junction layer disposed between a first conductivity type semiconductor layer and a second conductivity type semiconductor layer to which a reverse vias voltage is applied. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer have an about 2 to 4-time doping concentration difference therebetween, thus making it possible to provide the electro-optic device optimized for high speed, low power consumption and high integration.
Abstract:
Provided is an electro-optic modulating device. The electro-optic modulating device includes an optical waveguide with a vertical structure and sidewalls of the vertical structure are used to configure a junction.