摘要:
A process for forming a graphene circuit pattern on an object is described. A graphene layer is grown on a metal foil. A bonding layer is formed on a protective film and a surface of the bonding layer is roughened. The graphene layer is transferred onto the roughened surface of the bonding layer. The protective film is removed and the bonding layer is laminated to a first core dielectric substrate. The metal foil is etched away. Thereafter the graphene layer is etched using oxygen plasma etching to form graphene circuits on the first core dielectric substrate. The first core dielectric substrate having graphene circuits thereon is bonded together with a second core dielectric substrate wherein the graphene circuits are on a side facing the second core dielectric substrate wherein an air gap is left therebetween.
摘要:
A circuit board structure includes an inner circuit structure and a first build-up circuit structure. The inner circuit structure includes a core layer having an upper surface and a lower surface, a first patterned circuit layer disposed on the upper surface, a second patterned circuit layer disposed on the lower surface and a conductive through hole connecting the first and the second patterned circuit layers. The first build-up circuit structure at least has a cavity and an inner dielectric layer. The inner dielectric layer has an opening communicating the cavity and a pad of the first patterned circuit layer is located in the opening. A hole diameter of the opening is smaller than a hole diameter of cavity. An inner surface of the inner dielectric layer exposed by the cavity and a top surface of the pad are coplanar or have a height difference.
摘要:
Provided herein is a carrier-attached copper foil having desirable fine circuit formability. The carrier-attached copper foil includes a carrier, an interlayer, and an ultrathin copper layer in this order, wherein D2-D1 is 0.30 to 3.83 μm, where D1 is the gravimetrically measured thickness of the carrier-attached copper foil excluding the carrier and the interlayer, and D2 is the maximum thickness of the layer remaining on a bismaleimide-triazine resin substrate in case of detaching the carrier after the carrier-attached copper foil is laminated to the resin substrate from the ultrathin copper layer side by being heat pressed under a pressure of 20 kgf/cm2 at 220° C. for 2 hours.
摘要翻译:本文提供了具有所需的精细电路成形性的载体附着铜箔。 载体附着的铜箔依次包括载体,中间层和超薄铜层,D2-D1为0.30〜3.83μm,D1为载体附着铜箔的重量测定厚度,不包括载体, 中间层D2是在将载体附着铜箔从超薄铜层侧层压到树脂基板上之后通过热压下而分离载体的情况下,在双马来酰亚胺 - 三嗪树脂基板上残留的层的最大厚度 在220℃下压力为20kgf / cm 2小时。
摘要:
A printed circuit board and a method of manufacturing a printed circuit board are provided. The printed circuit board includes an insulating layer, a circuit layer embedded in the insulating layer, a solder resist layer disposed on one surface of the insulating layer, the solder resist layer having a cavity of a through-hole shape to expose a part of the circuit layer from the insulating layer, and a metal post embedded in the solder resist layer and exposed to outside via an opening of the solder resist layer, and the metal post includes a first post metal layer, a post barrier layer, and a second post metal layer disposed in that order.
摘要:
Disclosed are a printed circuit board and a method for manufacturing the same. The printed circuit board includes a core insulating layer, at least one via formed through the core insulating layer, an inner circuit layer buried in the core insulating layer, and an outer circuit layer on a top surface or a bottom surface of the core insulating layer, wherein the via includes a center part having a first width and a contact part having a second width, the contact part makes contact with a surface of the core insulating layer, and the first width is larger than the second width. The inner circuit layer and the via are simultaneously formed so that the process steps are reduced. Since odd circuit layers are provided, the printed circuit board has a light and slim structure.
摘要:
A fluororesin base material containing a fluororesin as a main component includes a modified layer on at least a partial region of a surface thereof, the modified layer containing a siloxane bond and a hydrophilic organofunctional group, and a surface of the modified layer having a contact angle of 90° or less with pure water.
摘要:
A printed circuit board includes an upper circuit layer including a circuit pattern embedded in an upper part of an insulating layer, the circuit pattern being made of electroconductive metal; and a metal bump formed on the circuit pattern and the insulating layer
摘要:
A wiring board includes an electrode pad having a first surface and a second surface located on an opposite side from the first surface, a conductor pattern connected to the first surface of the electrode pad, and an insulator layer embedded with the electrode pad and the conductor pattern. The insulator layer covers an outer peripheral portion of the second surface of the electrode pad.
摘要:
A process for fabricating a wiring board is provided. In the process, a wiring carrying substrate including a carry substrate and a wiring layer is formed. Next, at least one blind via is formed in the wiring carrying substrate. Next, the wiring carrying substrate is laminated to another wiring carrying substrate via an insulation layer. The insulation layer is disposed between the wiring layers of the wiring carrying substrates and full fills the blind via. Next, parts of the carry substrates are removed to expose the insulation layer in the blind via. Next, a conductive pillar connected between the wiring layers is formed. Next, the rest carry substrates are removed.
摘要:
A substrate with a built-in component is constructed such that a resin reliably goes around a clearance provided in a lower portion of the component and is thus filled in without expansion of a clearance in a height direction when various components such as an LW reversal type chip component are to be built in. The substrate includes a component to be embedded in a resin layer, and a land electrode (a component mounting electrode) to which external electrodes of the component are to be bonded, the land electrode being provided with a concave groove extending in a transverse direction through which an uncured resin of the resin layer flows, and the uncured resin of the resin layer flows through the concave groove and sufficiently goes around a lower side of the component so that the resin is well filled in when the component in a mounting state is to be embedded in the resin layer.