摘要:
Disclosed is a Probe Positioning Actuator which is low in cost and mass, capable of high accelerations, relatively long stroke and compact packaging, as well as high in efficiency. The actuator assembly comprises a frame, and at least one pair of spaced apart, laterally extending, conductor carrying, flexible beams attached to the frame. A non-magnetic armature, substantially U-shaped in cross section, is attached adjacent or approximate the extended terminal ends of the beams, and a probe is attached to the base of the "U" of the armature for contacting selected points in the electrical circuit associated with the device being tested. The heart of the actuator includes a coil mounted on the upstanding legs of the U-shaped armature and arranged so that the axis of the coil is perpendicular to the base of the armature but substantially parallel to the probe tip. This arrangement places the `motor` portion of the actuator adjacent the probe and permits accurate and repeatable, fast control of not only probe tip position but probe tip movement. To complete the motor portion of the actuator, means, carried by the frame create a magnetic field across the coil, whereby upon energization of the coil, deflection of the armature (and thus the beams) occurs, effecting movement of the probe tip into contact with selected portions of the device being tested.
摘要:
Disclosed is a Probe Positioning Actuator which is low in cost and mass, capable of high accelerations, relatively long stroke and compact packaging, as well as high in efficiency. The actuator assembly comprises a frame, and at least one pair of spaced apart, laterally extending, conductor carrying, flexible beams attached to the frame. A non-magnetic armature, substantially U-shaped in cross section, is attached adjacent or approximate the extended terminal ends of the beams, and a probe is attached to the base of the "U" of the armature for contacting selected points in the electrical circuit associated with the device being tested. The heart of the actuator includes a coil mounted on the upstanding legs of the U-shaped armature and arranged so that the axis of the coil is perpendicular to the base of the armature but substantially parallel to the probe tip. This arrangement places the `motor` portion of the actuator adjacent the probe and permits accurate and repeatable, fast control of not only probe tip position but probe tip movement. To complete the motor portion of the actuator, means, carried by the frame create a magnetic field across the coil, whereby upon energization of the coil, deflection of the armature (and thus the beams) occurs, effecting movement of the prob into contact with selected portions of the device being tested.
摘要:
Probing system performance is improved by dynamically positioning a test probe at a test site during the gantry settling interval using a high performance secondary positioner to compensate for the inherent moving mass oscillational displacements. A primary positioner positions the gantry and its associated test probe to within a predetermined axis distance of the test site and a secondary positioner dynamically maintains the test probe at a target position corresponding to the test site during the settling interval by imparting compensating displacements to the test probe to counteract the displacement errors incurred as the primary positioner attempts to settle the gantry at the test site. Similarly, automatic machine tool performance is improved by dynamically positioning a work tool at a work site during the gantry settling interval using a high performance secondary positioner to compensate for the inherent moving mass oscillational displacements. A primary positioner positions the gantry and its associated work tool to within a predetermined axis distance of the work site and a secondary positioner dynamically maintains the work tool at a target position corresponding to the work site during the settling interval by imparting compensating displacements to the work tool to counteract the displacement errors incurred as the primary positioner attempts to settle the gantry at the work site.
摘要:
A system for probing both sides of a high density printed circuit board includes an open frame extending around the circuit board when it is held in a test position by a circuit board carrier. The frame includes two parallel rail structures extending above, and at opposite ends of, the circuit board in the test position. The frame also includes another two parallel rail structures extending below, and at opposite ends of, the circuit board. The upper and lower rail structures extend perpendicularly to one another, and are fastened together at the corners of the frame by means of compression bolt assemblies. Two gantry structures are moved in a first direction between the upper rail structures, while two other gantry structures are moved in a direction perpendicular to the first direction between the lower rail structures. A carriage moves along each gantry structure, and a probe is mounted on each carriage to be moved toward and away from the adjacent surface of the circuit board. The circuit board is moved by a board carrier between a position, outside the frame, in which it is loaded and unloaded, and the test position.
摘要:
Disclosed is a Mini Probe Positioning Actuator which is low in cost and mass, capable of high accelerations, relatively long stroke and compact packaging. The probe positioning actuator is composed of a pair of substantially parallel cantilevered beams, each beam being comprised of flexible, signal carrying cable formed of a polyimide composition which allows for the probe tip to be suspended from and form part of the armature of the actuator. The armature also includes a pair of oppositely wound coils intermediate the beams, which coils coact electromagnetically with a pair of spaced apart but fixedly positioned (relative to the coils/armature) magnets forming a motor for effecting armature and thus probe tip movement. The light mass of the coils and armature and the dual functional purpose of the suspension beams serves to make the probe actuator highly accurate and sensitive while allowing for reliable operation.
摘要:
An ultrasonic wirebonding assembly, consisting of an actuator producing vibrations at an ultrasonic frequency and a tip transmitting such vibrations to a bonding wire atop a terminal to which the wire is to be bonded, is moved among positions on a circuit chip where wirebonding operations are to occur by means of a linkage. The linkage consists of first and second drive arms, each of which is pivoted on a single stationary shaft, a drive link pivoted on the second drive arm, and a connecting link extending between the drive link and the first drive arm, being pivoted at each end. Each arm is independently driven using a motor having a coil moving over an arcuate permanent magnet. The wirebonding assembly is driven vertically, downward in a direction of engagement with the workpiece and upward in a direction of disengagement with the workpiece, on the drive link by means of a linear motor. The rapid movements available from this linkage facilitate the use of an incrementally moving conveyer holding a number of circuit chips on which wirebonding operations are to be performed.
摘要:
In ultrasonic wirebonding apparatus, vibrations produced using a tubular piezoelectric (piezoceramic) actuator, driven by electrical current at an ultrasonic frequency, are used to provide energy for the wirebonding process. An assembly including means for mounting the actuator at a proximal end, the actuator itself, and a bonding tip extending from a distal end of the actuator, are moved by a carrier between the various points at which wirebonding is to occur. The bonding wire is fed through a passageway in this assembly. The carrier slides on a first carriage for movement into engagement with the workpiece. The first carriage slides in a first direction on a second carriage, which in turn slides in a second direction, to move between points at which wirebonding is to occur. The workpieces, such as circuit chips being manufactured, are moved into a workspace for wirebonding, are held therein during processing, and are subsequently removed from the workspace.
摘要:
A method for tuning a laser via a temperature control loop that linearizes a non-linear characteristic of a thermal electric cooler (TEC) element used to adjust the temperature of tuning components and corresponding laser apparatus. One or more TEC elements are thermally coupled to respective tuning components, such as etalon filters. The TEC elements provide a heat transfer function (cooling rate) in response to a received electrical input (drive signal), wherein the relationship between the cooling rate and the drive signal is non-linear. An un-compensated drive signal produced by the control loop is compensated such that the open loop gain of the control loop is linearized via a linearizer control block. In effect, the non-linear transfer function of the TEC element is cancelled out by the linearizer control block to produce a linear relationship between the cooling rate and the drive signal. This open loop gain linearization enables tuning events such as channel slewing, and laser start-up operations to be performed with reduced tuning overshoots and undershoots that would otherwise result from the non-linear TEC transfer function characteristic.
摘要:
The sequential order of movements of a number of probes within a circuit test fixture is optimized through the use of an algorithm which sequentially orders test configurations provided in an input list. Each test configuration corresponds to the locations of probes within the fixture as a particular test is performed. In a first pass of the algorithm, for each test configuration, every other test configuration is considered as a next move candidate for which a weighted distance is calculated from the test configuration. Weighting factors reflect the degree of difficulty in moving one direction instead of another. A need to move one probe before another or to move in one direction before another, in order to prevent a collision within the test fixture, is also considered. A predetermined number of next move candidates having the lowest weighted distances are placed in an intermediate list for the test configuration. In a second pass of the algorithm, test configurations are linked, one to another, to form a list reflecting a preferred order of probe movement. In the process of linking with a test configuration, the available next move candidate having the shortest weighted distance is chosen from the intermediate list of the test configuration. If no available next move candidates remain in the intermediate list, the process returns to the first pass of the algorithm to get more next move candidates. Additionally, the algorithm is used to sequentially order individual points for a test fixture having only a single probe.
摘要:
A fixture for testing circuits includes a rectangular array of conductive test pads, alternating with insulating areas in a checkerboard-like pattern. In a first embodiment, the entire array is printed on a central portion of a plastic membrane, with outer portions of the membrane carrying electrical lines from the test pads to connectors. In a second embodiment, the rectangular array is formed on surfaces of a number of closely packet plastic membranes, each of which has tabs extending away from the testing surface to connectors. The test fixture is generic, not being configured for testing a particular circuit configuration. To compensate for conditions of linear misalignment, the rectangular array is moved in a raster pattern having a size equal to the cell size of the rectangular array. To compensate for conditions of angular misalignment, the array may be rotated after such misalignment is measured, or test results may be compared with exemplary data for a number of misalignment conditions.