摘要:
A semiconductor device can include a first gate electrode including a gate insulating pattern, a gate conductive pattern and a capping pattern that are sequentially stacked on a semiconductor substrate, and a first spacer of a low dielectric constant disposed on a lower sidewall of the first gate electrode. A second spacer of a high dielectric constant, that is greater than the low dielectric constant, is disposed on an upper sidewall of the first gate electrode above the first spacer.
摘要:
A semiconductor device can include a first gate electrode including a gate insulating pattern, a gate conductive pattern and a capping pattern that are sequentially stacked on a semiconductor substrate, and a first spacer of a low dielectric constant disposed on a lower sidewall of the first gate electrode. A second spacer of a high dielectric constant, that is greater than the low dielectric constant, is disposed on an upper sidewall of the first gate electrode above the first spacer.
摘要:
A semiconductor device can include a first gate electrode including a gate insulating pattern, a gate conductive pattern and a capping pattern that are sequentially stacked on a semiconductor substrate, and a first spacer of a low dielectric constant disposed on a lower sidewall of the first gate electrode. A second spacer of a high dielectric constant, that is greater than the low dielectric constant, is disposed on an upper sidewall of the first gate electrode above the first spacer.
摘要:
In a method of forming an ohmic layer of a DRAM device, the metal silicide layer between the storage node contact plug and the lower electrode of a capacitor is formed as the ohmic layer by a first heat treatment under a first temperature and an instantaneous second heat treatment under a second temperature higher than the first temperature. Thus, the metal silicide layer has a thermo-stable crystal structure and little or no agglomeration occurs on the metal silicide layer in the high temperature process. Accordingly, the sheet resistance of the ohmic layer may not increase in spite of the subsequent high temperature process.
摘要:
A semiconductor device includes a substrate, a first active fin and a second active fin on the substrate, respectively, a plurality of first epitaxial layers on the first active fin and on the second active fin, respectively, a plurality of second epitaxial layers on the plurality of first epitaxial layers, a bridge layer connecting the plurality of second epitaxial layers to each other, and a third epitaxial layer on the bridge layer.
摘要:
Provided are semiconductor devices that include an active pattern on a substrate, first and second gate electrodes on the active pattern and arranged in a first direction relative to one another and a first source/drain region in a first trench that extends into the active pattern between the first and second gate electrodes. The first source/drain region includes a first epitaxial layer that is configured to fill the first trench and that includes at least one plane defect that originates at a top portion of the first epitaxial layer and extends towards a bottom portion of the first epitaxial layer.
摘要:
Methods of forming a semiconductor device include providing a substrate having an area including a source and a drain region of a transistor. A nickel (Ni) metal film is formed on the substrate area including the source and the drain region. A first heat-treatment process is performed including heating the substrate including the metal film from a first temperature to a second temperature at a first ramping rate and holding the substrate including the metal film at the second temperature for a first period of time. A second heat-treatment process is then performed including heating the substrate including the metal film from a third temperature to a fourth temperature at a second ramping rate and holding the substrate at the fourth temperature for a second period of time. The fourth temperature is different from the second temperature and the second period of time is different from the first period of time. The sequentially performed first and second heat-treatment processes convert the Ni metal layer on the source and drain regions into a NiSi layer on the source and drain regions and a NiSi2 layer between the NiSi layer and the source and drain regions.
摘要:
Methods of forming a semiconductor device include providing a substrate having an area including a source and a drain region of a transistor. A nickel (Ni) metal film is formed on the substrate area including the source and the drain region. A first heat-treatment process is performed including heating the substrate including the metal film from a first temperature to a second temperature at a first ramping rate and holding the substrate including the metal film at the second temperature for a first period of time. A second heat-treatment process is then performed including heating the substrate including the metal film from a third temperature to a fourth temperature at a second ramping rate and holding the substrate at the fourth temperature for a second period of time. The fourth temperature is different from the second temperature and the second period of time is different from the first period of time. The sequentially performed first and second heat-treatment processes convert the Ni metal layer on the source and drain regions into a NiSi layer on the source and drain regions and a NiSi2 layer between the NiSi layer and the source and drain regions.
摘要:
Transistors having a high carrier mobility and devices incorporating the same are fabricated by forming a preliminary semiconductor layer in a semiconductor substrate at both sides of a gate pattern. A source/ drain semiconductor layer having a heterojunction with the semiconductor substrate is formed by irradiating a laser beam onto the preliminary semiconductor layer. The source/drain semiconductor layer is formed in a recrystallized single crystal structure.
摘要:
A secondary battery that includes a cylindrical can, an electrode assembly arranged in a jelly-role configuration within the cylindrical can and having a core extending about an axis thereof and a hollow center pin arranged within the core of the electrode assembly and having an inner diameter and an outer diameter, the outer diameter forming ones of a pair of radial lengths diametrically opposite from each other, each of said pair of radial lengths extending from the outer diameter of the center pin to an external surface of the core, wherein the sum of the pair of radial lengths is in the range of 5% to 54% of the inner diameter of the center pin.