Copper nanowire production for interconnect applications
    1.
    发明授权
    Copper nanowire production for interconnect applications 有权
    铜纳米线生产用于互连应用

    公开(公告)号:US08834597B1

    公开(公告)日:2014-09-16

    申请号:US13485721

    申请日:2012-05-31

    Abstract: A method of fabricating metallic Cu nanowires with lengths up to about 25 μm and diameters in a range 20-100 nm, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 μm), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nm. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

    Abstract translation: 如果需要,制造长度大约25μm,直径在20-100nm范围内的金属Cu纳米线的方法或更高。 垂直取向或侧向取向的氧化铜结构(CuO和/或Cu2O)在Cu衬底上生长。 氧化铜结构以99%以上的H或H 2还原,在该还原过程中,长度减小(不大于约25μm),衬底上存活的纳米结构的密度降低,并且存活的纳米结构的直径 约20-100nm的范围。 所得的纳米线基本上是纯Cu,并且可以横向(用于局部或全局互连)或者可以垂直取向(对于标准垂直互连)。

    Growth method for chalcongenide phase-change nanostructures
    2.
    发明授权
    Growth method for chalcongenide phase-change nanostructures 失效
    胡瓜碱相变纳米结构的生长方法

    公开(公告)号:US07655497B1

    公开(公告)日:2010-02-02

    申请号:US11513431

    申请日:2006-08-25

    Abstract: A method for growth of an alloy for use in a nanostructure, to provide a resulting nanostructure compound including at least one of GexTey, InxSby, InxSey, SbxTey, GaxSby, GexSby,Tez, InxSbyTez, GaxSeyTez, SnxSbyTez, InxSbyGez, GewSnxSbyTez, GewSbxSeyTez, and TewGexSbySz, where w, x, y and z are numbers consistent with oxidization states (2, 3, 4, 5, 6) of the corresponding elements. The melt temperatures for some of the resulting compounds are in a range 330-420° C., or even lower with some compounds.

    Abstract translation: 一种用于生长用于纳米结构的合金的方法,以提供所得纳米结构化合物,其包括GexTey,InxSby,InxSey,SbxTey,GaxSby,GexSby,Tez,InxSbyTez,GaxSeyTez,SnxSbyTez,InxSbyGez,GewSnxSbyTez,GewSbxSeyTez, 和TewGexSbySz,其中w,x,y和z是与相应元素的氧化态(2,3,4,5,6)一致的数字。 一些所得化合物的熔融温度在330-420℃的范围内,或者甚至更低一些化合物。

    NANOENGINEERED THERMAL MATERIALS BASED ON CARBON NANOTUBE ARRAY COMPOSITES
    3.
    发明申请
    NANOENGINEERED THERMAL MATERIALS BASED ON CARBON NANOTUBE ARRAY COMPOSITES 有权
    基于碳纳米管阵列复合材料的纳米级热物质

    公开(公告)号:US20070163769A9

    公开(公告)日:2007-07-19

    申请号:US10825795

    申请日:2004-04-13

    Abstract: A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

    Abstract translation: 一种使用碳纳米管阵列(CNT)提供热传导的方法。 在具有高导热性的衬底上生长垂直取向的CNT的阵列,并且阵列中相邻的CNT之间的间隙区域部分地或全部地填充有具有高热导率的填充材料,使得每个CNT的至少一个端部暴露 。 每个CNT的暴露端被压靠在要从其去除热量的物体的表面上。 与衬底相邻的CNT-填料复合物提供了改善的机械强度,以将CNT锚定在适当位置,并且还用作散热器以改善热通量从较小体积(CNT)到更大的散热器的扩散。

    Nanoengineered thermal materials based on carbon nanotube array composites
    4.
    发明申请
    Nanoengineered thermal materials based on carbon nanotube array composites 有权
    基于碳纳米管阵列复合材料的纳米工程热材料

    公开(公告)号:US20050224220A1

    公开(公告)日:2005-10-13

    申请号:US10825795

    申请日:2004-04-13

    Abstract: A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

    Abstract translation: 一种使用碳纳米管阵列(CNT)提供热传导的方法。 在具有高导热性的衬底上生长垂直取向的CNT的阵列,并且阵列中相邻的CNT之间的间隙区域部分地或全部地填充有具有高热导率的填充材料,使得每个CNT的至少一个端部暴露 。 每个CNT的暴露端被压靠在要从其去除热量的物体的表面上。 与衬底相邻的CNT-填料复合物提供了改善的机械强度,以将CNT锚定在适当位置,并且还用作散热器以改善热通量从较小体积(CNT)到更大的散热器的扩散。

    Fabrication of nanopipette arrays for biosensing
    5.
    发明授权
    Fabrication of nanopipette arrays for biosensing 有权
    制作用于生物传感的纳米片剂阵列

    公开(公告)号:US09182394B1

    公开(公告)日:2015-11-10

    申请号:US13480917

    申请日:2012-05-25

    Inventor: Meyya Meyyappan

    CPC classification number: G01N27/3278 G01N33/54386

    Abstract: Method for providing a nanopipette array for biosensing applications. A thin substrate of anodizable metal (“AN-metal,” such as Al, Mg, Zn, Ti, Ta and/or Nb) is anodized at temperature T=20-200° C., chemical bath pH=4-6 and electrical potential 1-300 Volts, to produce an array of anodized nanopipette channels, having diameters 10-50 nm, with oxidized channel surfaces of thickness 5-20 nm. A portion of exposed non-oxidized AN-metal between adjacent nanopipette channels, of length 1-5 μm, is etched away, exposing inner and outer surfaces of a nanopipette channel. A probe molecule, is deposited on one or both surfaces to provide biosensing capability for K(≧1) target molecules. Target molecule presence, in an above-threshold concentration, in a fluid passed through or adjacent to a nanopipette channel, produces characteristic detection signals associated with the probe molecule site.

    Abstract translation: 提供用于生物传感应用的纳米微管阵列的方法。 在T = 20-200℃,化学浴pH = 4-6的条件下对阳极氧化金属(“AN金属”,如Al,Mg,Zn,Ti,Ta和/或Nb)的薄基板进行阳极氧化处理 电位1-300伏,以产生具有10-50nm直径的阳极氧化纳米管通道阵列,具有厚度5-20nm的氧化通道表面。 在距离为1-5μm的相邻纳米管通道之间暴露的未氧化的AN金属的一部分被蚀刻掉,暴露了纳米管通道的内表面和外表面。 探针分子沉积在一个或两个表面上,为K(≧1)靶分子提供生物传感能力。 目标分子以超过阈值的浓度存在于通过或邻近纳米药片通道的流体中,产生与探针分子位点相关的特征检测信号。

    Carbon nanotube tower-based supercapacitor
    7.
    发明授权
    Carbon nanotube tower-based supercapacitor 有权
    碳纳米管塔式超级电容器

    公开(公告)号:US08333810B1

    公开(公告)日:2012-12-18

    申请号:US12398854

    申请日:2009-03-05

    Inventor: Meyya Meyyappan

    Abstract: A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

    Abstract translation: 一种超级电容器系统,包括(i)第一和第二间隔开的平面收集器,(ii)用作电极的多壁碳纳米管(MWCNT)塔或单壁碳纳米管(SWCNT)塔的第一和第二阵列,其延伸 在第一和第二收集器之间,其中纳米管塔直接生长在收集器表面上而不沉积催化剂,并且在收集器表面上没有沉积粘合剂材料,和(iii)多孔分离器模块,其具有基本上为 与至少一个电极的横向面积相同,其中(iv)至少一个纳米管塔被功能化以允许或鼓励塔表现为亲水性结构,具有增加的表面润湿性。

    Functionalization of carbon nanotubes
    8.
    发明授权
    Functionalization of carbon nanotubes 失效
    碳纳米管的功能化

    公开(公告)号:US07473436B1

    公开(公告)日:2009-01-06

    申请号:US10828524

    申请日:2004-04-05

    CPC classification number: B82Y30/00 B82Y40/00 C01B32/174 H05H3/02 Y10S427/102

    Abstract: Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

    Abstract translation: 用于功能化碳纳米管(CNT)集合的方法和系统。 照射所选择的前体气体(例如H2或F2或CnHm),以在第一室中提供所选靶物质颗粒的冷等离子体,例如原子H或F。 目标物质颗粒指向位于第二室中的CNT阵列,同时抑制紫外线辐射传递到第二室。 在不超过约30秒的曝光时间间隔内,CNT阵列在室温或室温下被靶物种颗粒功能化到饱和点。 *对非目标物种的歧视是通过以下方式提供的:(i)使用具有远远大于非目标物种的寿命的寿命的目标物种和/或(2)使用施加的磁场来区分带电的 目标物种和非目标物种的粒子轨迹。

    In-situ synthesis of carbon nanotubes filled with metallic nanoparticles using arc discharge in solution
    9.
    发明授权
    In-situ synthesis of carbon nanotubes filled with metallic nanoparticles using arc discharge in solution 有权
    在溶液中使用电弧放电填充金属纳米粒子的碳纳米管的原位合成

    公开(公告)号:US07968072B2

    公开(公告)日:2011-06-28

    申请号:US12229683

    申请日:2008-08-26

    Abstract: A novel method for simultaneously forming and filling and decorating carbon nanotubes with palladium nanoparticles is disclosed. Synthesis involves preparing a palladium chloride (PdCl2) solution in a container, having two graphite electrodes, then immersing the graphite electrode assembly, into the PdCl2 solution; connecting the graphite electrodes to a direct current power supply; bringing the electrodes into contact with each other to strike an arc; separating the electrodes to sustain the arc inside the solution; putting the container with electrode assembly in a water-cooled bath; and collecting Pd-nanoparticles encapsulated in carbon nanotubes and carbon nanotubes decorated with Pd-nanoparticles. The temperature at the site of the arc-discharge is greater than 3000° C. At these temperatures, the palladium is ionized into nanoparticles and the graphite electrodes generate layers of graphene (carbon), which roll away from the anode and encapsulate or entrap the Pd-nanoparticles. The unique nanotube structures have significant commercial potential as gas sensors or as a means for hydrogen storage.

    Abstract translation: 公开了一种用钯纳米颗粒同时形成和填充和装饰碳纳米管的新方法。 合成包括在容器中制备氯化钯(PdCl 2)溶液,其具有两个石墨电极,然后将石墨电极组件浸入PdCl 2溶液中; 将石墨电极连接到直流电源; 使电极彼此接触以产生电弧; 分离电极以维持溶液内的电弧; 将容器与电极组件放在水冷浴中; 并收集封装在碳纳米管中的Pd-纳米颗粒和用Pd-纳米颗粒装饰的碳纳米管。 电弧放电现场的温度大于3000℃。在这些温度下,钯离子化成纳米颗粒,石墨电极产生石墨烯层(碳),其从阳极卷起并封闭或截留 钯纳米粒子。 独特的纳米管结构作为气体传感器或作为氢存储的手段具有显着的商业潜力。

    Real time oil reservoir evaluation using nanotechnology
    10.
    发明授权
    Real time oil reservoir evaluation using nanotechnology 有权
    实时油藏评估采用纳米技术

    公开(公告)号:US07875455B1

    公开(公告)日:2011-01-25

    申请号:US11489803

    申请日:2006-07-12

    CPC classification number: G01V9/00 E21B47/06 E21B47/10 Y10S977/957

    Abstract: A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.

    Abstract translation: 通过监测井场顶部空间中或附近的选定化学和物理性质来评估矿物生产场(例如油和/或气)的状态和响应的方法和系统。 提供用于一个或多个地下(流体)矿物生产井眼的纳米技术传感器和其他传感器,以确定在井眼相邻的流体,相对湿度,温度和/或流体压力中的两个或更多个目标分子中的每一个的存在/不存在,以及 流体的流动方向和流速。 纳米传感器测量电参数值并估计相应的环境参数值,例如含水量或碳氢化合物含量。 该系统足够小,可以在井场的每个矿产地层中位于井下。

Patent Agency Ranking