Method of forming a collar using selective SiGe/Amorphous Si Etch
    1.
    发明授权
    Method of forming a collar using selective SiGe/Amorphous Si Etch 失效
    使用选择性SiGe /无定形Si蚀刻法形成套环的方法

    公开(公告)号:US06987042B2

    公开(公告)日:2006-01-17

    申请号:US10250046

    申请日:2003-05-30

    IPC分类号: H01L21/8242

    摘要: A method of forming collar isolation for a trench storage memory cell structure is provided in which amorphous Si (a:Si) and silicon germanium (SiGe) are first formed into a trench structure. An etching process that is selective to a:Si as compared to SiGe is employed in defining the regions in which the collar isolation will be formed. The selective etching process employed in the present invention is a wet etch process that includes etching with HF, rinsing, etching with NH4OH, rinsing, and drying with a monohydric alcohol such as isopropanol. The sequence of NH4OH etching and rinsing may be repeated any number of times. The conditions used in the selective etching process of the present invention are capable of etching a:Si at a faster rate than SiGe.

    摘要翻译: 提供了一种形成沟槽存储单元结构的套环隔离的方法,其中首先将非晶硅(a:Si)和硅锗(SiGe)形成沟槽结构。 与SiGe相比,对a:Si有选择性的蚀刻工艺用于限定将形成套环隔离的区域。 在本发明中采用的选择性蚀刻方法是湿式蚀刻工艺,其包括用HF蚀刻,漂洗,用NH 4 OH蚀刻,漂洗和用一元醇如异丙醇干燥。 NH 4 OH蚀刻和漂洗的顺序可以重复任意次数。 在本发明的选择性蚀刻工艺中使用的条件能够以比SiGe更快的速度蚀刻Si。

    Structure and method of forming a notched gate field effect transistor
    2.
    发明授权
    Structure and method of forming a notched gate field effect transistor 失效
    形成陷波栅场效应晶体管的结构和方法

    公开(公告)号:US06905976B2

    公开(公告)日:2005-06-14

    申请号:US10249771

    申请日:2003-05-06

    摘要: The structure and method of forming a notched gate MOSFET disclosed herein addresses such problems as device reliability. A gate dielectric (e.g. gate oxide) is formed on the surface of an active area on the semiconductor substrate, preferably defined by an isolation trench region. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium) (SiGe). The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer, to reduce resistance of the gate conductor. One or more other processing steps (e.g. source and drain implants, extension implants, and pocket lightly doped drain (LDD) implants), gate conductor stack doping, and silicidation are preferably performed in completing the transistor.

    摘要翻译: 本文公开的形成缺口栅极MOSFET的结构和方法解决了诸如器件可靠性的问题。 栅电介质(例如栅极氧化物)形成在半导体衬底上的有源区的表面上,优选由隔离沟槽区限定。 然后在栅极电介质上沉积多晶硅层。 该步骤之后是沉积一层硅锗)(SiGe)。 然后横向蚀刻多晶硅层的侧壁,对SiGe层有选择性,以产生刻蚀的栅极导体结构,其中SiGe层比下面的多晶硅层宽。 侧壁间隔物优选形成在SiGe层和多晶硅层的侧壁上。 硅化物层优选从沉积在SiGe层上的多晶硅层形成为自对准硅化物,以降低栅极导体的电阻。 优选在完成晶体管时执行一个或多个其它处理步骤(例如源极和漏极注入,延伸注入和袖带轻掺杂漏极(LDD)注入),栅极导体堆叠掺杂和硅化。

    Structure and method of forming a notched gate field effect transistor
    3.
    发明申请
    Structure and method of forming a notched gate field effect transistor 审中-公开
    形成陷波栅场效应晶体管的结构和方法

    公开(公告)号:US20060157805A1

    公开(公告)日:2006-07-20

    申请号:US11266245

    申请日:2005-11-04

    IPC分类号: H01L29/94

    摘要: A structure and method of forming a notched gate MOSFET. A gate dielectric is formed on the surface of an active area on the semiconductor substrate. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium. The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer. One or more other processing steps are preferably performed in completing the transistor.

    摘要翻译: 形成缺口栅极MOSFET的结构和方法。 栅电介质形成在半导体衬底上的有源区的表面上。 然后在栅极电介质上沉积多晶硅层。 该步骤之后是沉积一层硅锗。 然后横向蚀刻多晶硅层的侧壁,对SiGe层有选择性,以产生刻蚀的栅极导体结构,其中SiGe层比下面的多晶硅层宽。 侧壁间隔物优选形成在SiGe层和多晶硅层的侧壁上。 硅化物层优选从沉积在SiGe层上的多晶硅层形成为自对准硅化物。 优选在完成晶体管时执行一个或多个其它处理步骤。

    Structure and method of forming a notched gate field effect transistor
    4.
    发明授权
    Structure and method of forming a notched gate field effect transistor 有权
    形成陷波栅场效应晶体管的结构和方法

    公开(公告)号:US07129564B2

    公开(公告)日:2006-10-31

    申请号:US11059819

    申请日:2005-02-17

    IPC分类号: H01L31/117

    摘要: The structure and method of forming a notched gate MOSFET disclosed herein addresses such problems as device reliability. A gate dielectric (e.g. gate oxide) is formed on the surface of an active area on the semiconductor substrate, preferably defined by an isolation trench region. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium) (SiGe). The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer, to reduce resistance of the gate conductor. One or more other processing steps (e.g. source and drain implants, extension implants, and pocket lightly doped drain (LDD) implants), gate conductor stack doping, and silicidation are preferably performed in completing the transistor.

    摘要翻译: 本文公开的形成缺口栅极MOSFET的结构和方法解决了诸如器件可靠性的问题。 栅电介质(例如栅极氧化物)形成在半导体衬底上的有源区的表面上,优选由隔离沟槽区限定。 然后在栅极电介质上沉积多晶硅层。 该步骤之后是沉积一层硅锗)(SiGe)。 然后横向蚀刻多晶硅层的侧壁,对SiGe层有选择性,以产生刻蚀的栅极导体结构,其中SiGe层比下面的多晶硅层宽。 侧壁间隔物优选形成在SiGe层和多晶硅层的侧壁上。 硅化物层优选从沉积在SiGe层上的多晶硅层形成为自对准硅化物,以降低栅极导体的电阻。 优选在完成晶体管时执行一个或多个其它处理步骤(例如源极和漏极注入,延伸注入和袖带轻掺杂漏极(LDD)注入),栅极导体堆叠掺杂和硅化。

    Semiconductor transistors having high-K gate dielectric layers, metal gate electrode regions, and low fringing capacitances
    7.
    发明授权
    Semiconductor transistors having high-K gate dielectric layers, metal gate electrode regions, and low fringing capacitances 有权
    具有高K栅极电介质层,金属栅电极区域和低边缘电容的半导体晶体管

    公开(公告)号:US08232612B2

    公开(公告)日:2012-07-31

    申请号:US12645981

    申请日:2009-12-23

    IPC分类号: H01L21/00

    摘要: A semiconductor structure. The structure includes (i) a semiconductor substrate which includes a channel region, (ii) first and second source/drain regions on the semiconductor substrate, (iii) a gate dielectric region, and (iv) a gate electrode region, (v) a plurality of interconnect layers on the gate electrode region, and (vi) first and second spaces. The gate dielectric region is disposed between and in direct physical contact with the channel region and the gate electrode region. The gate electrode region is disposed between and in direct physical contact with the gate dielectric region and the interconnect layers. The first and second spaces are in direct physical contact with the gate electrode region. The first space is disposed between the first source/drain region and the gate electrode region. The second space is disposed between the second source/drain region and the gate electrode region.

    摘要翻译: 半导体结构。 该结构包括(i)半导体衬底,其包括沟道区,(ii)半导体衬底上的第一和第二源极/漏极区,(iii)栅极电介质区,和(iv)栅电极区,(v) 栅电极区上的多个互连层,以及(vi)第一和第二空间。 栅极电介质区域设置在沟道区域和栅电极区域之间并与其直接物理接触。 栅电极区域设置在栅极电介质区域和互连层之间并与其直接物理接触。 第一和第二空间与栅电极区域直接物理接触。 第一空间设置在第一源极/漏极区域和栅极电极区域之间。 第二空间设置在第二源极/漏极区域和栅极电极区域之间。

    Gate Effective-Workfunction Modification for CMOS
    8.
    发明申请
    Gate Effective-Workfunction Modification for CMOS 有权
    门有效功能修改CMOS

    公开(公告)号:US20110121401A1

    公开(公告)日:2011-05-26

    申请号:US13019949

    申请日:2011-02-02

    IPC分类号: H01L27/092

    摘要: CMOS circuit structures are disclosed with the PFET and NFET devices having high-k dielectric layers consisting of the same gate insulator material, and metal gate layers consisting of the same gate metal material. The PFET device has a “p” interface control layer which is capable of shifting the effective-workfunction of the gate in the p-direction. In a representative embodiment of the invention the “p” interface control layer is aluminum oxide. The NFET device may have an “n” interface control layer. The materials of the “p” and “n” interface control layers are differing materials. The “p” and “n” interface control layers are positioned to the opposite sides of their corresponding high-k dielectric layers. Methods for fabricating the CMOS circuit structures with the oppositely positioned “p” and “n” interface control layers are also disclosed.

    摘要翻译: 公开了CMOS电路结构,其中PFET和NFET器件具有由相同的栅极绝缘体材料构成的高k电介质层以及由相同栅极金属材料组成的金属栅极层。 PFET器件具有能够沿p方向移动栅极的有效功能的“p”接口控制层。 在本发明的代表性实施例中,“p”界面控制层是氧化铝。 NFET器件可以具有“n”个界面控制层。 “p”和“n”界面控制层的材料是不同的材料。 “p”和“n”界面控制层位于其相应的高k电介质层的相对侧。 还公开了制造具有相对定位的“p”和“n”界面控制层的CMOS电路结构的方法。

    Methods of forming mixed gate CMOS with single poly deposition
    9.
    发明授权
    Methods of forming mixed gate CMOS with single poly deposition 有权
    使用单个聚合物沉积形成混合栅极CMOS的方法

    公开(公告)号:US07741181B2

    公开(公告)日:2010-06-22

    申请号:US11936061

    申请日:2007-11-06

    IPC分类号: H01L21/8234

    摘要: A method for fabricating metal gate and polysilicon gate FET devices on the same chip is disclosed. The method avoids the use of two separate masks during gate stack fabrication of the differing gates. By using a single mask, tighter NFET to PFET distances can be achieved, and the fabrication process is simplified. After blanket disposing layers for the fabrication of the metal gate stack, a covering protective material layer is formed, again in blanket fashion. A block level mask is used to clear the surface for the gate insulator formation in the poly gate device regions. During oxidation, which forms the gate dielectric for the poly gate devices, the protective material prevents damage of the metal gate device regions. Following oxidation, a single common polysilicon cover is disposed in blanket manner for continuing the fabrication of the gate stacks. The protective material is selected in such a way to be either easily removable upon oxidation, or to be conductive upon oxidation. In this latter case the oxidized protective material is incorporated into the metal gate stack, which incorporation results in a novel CMOS structure.

    摘要翻译: 公开了一种在同一芯片上制造金属栅极和多晶硅栅极FET器件的方法。 该方法避免了在不同栅极的栅堆叠制造期间使用两个分离的掩模。 通过使用单个掩模,可以实现更紧密的NFET至PFET距离,并简化制造工艺。 在用于制造金属栅极堆叠的毯布设置层之后,再次以毯子形式形成覆盖保护材料层。 块级别掩模用于清除多晶硅栅极器件区域中的栅极绝缘体形成的表面。 在形成用于多晶硅栅极器件的栅极电介质的氧化期间,保护材料防止金属栅极器件区域的损坏。 在氧化之后,以橡皮布方式设置单个公共多晶硅盖,以继续制造栅极堆叠。 保护材料选择为在氧化时易于除去或在氧化时导电。 在后一种情况下,氧化的保护材料被并入到金属栅极堆叠中,其结合形成了新的CMOS结构。

    Disposable metallic or semiconductor gate spacer
    10.
    发明授权
    Disposable metallic or semiconductor gate spacer 失效
    一次性金属或半导体栅极间隔物

    公开(公告)号:US07682917B2

    公开(公告)日:2010-03-23

    申请号:US12016326

    申请日:2008-01-18

    IPC分类号: H01L21/336

    摘要: A disposable spacer is formed directly on or in close proximity to the sidewalls of a gate electrode and a gate dielectric. The disposable spacer comprises a material that scavenges oxygen such as a metal, a metal nitride, or a semiconductor material having high reactivity with oxygen. The disposable gate spacer absorbs any oxygen during subsequent high temperature processing such as a stress memorization anneal. A metal is deposited over, and reacted with, the gate electrode and source and drain regions to form metal semiconductor alloy regions. The disposable gate spacer is subsequently removed selective to the metal semiconductor alloy regions. A porous or non-porous low-k dielectric material is deposited to provide a low parasitic capacitance between the gate electrode and the source and drain regions. The gate dielectric maintains the original dielectric constant since the disposable gate spacer prevents absorption of additional oxygen during high temperature processes.

    摘要翻译: 一次性间隔物直接形成在栅极电极和栅极电介质的侧壁上或紧邻栅电极的侧壁上。 一次性间隔件包括清除氧的材料,例如金属,金属氮化物或具有高氧反应性的半导体材料。 一次性栅极间隔件在随后的高温处理例如应力记忆退火期间吸收任何氧气。 将金属沉积在栅电极和源极和漏极区上并与其反应以形成金属半导体合金区域。 一次性栅极间隔物随后被选择性地移除到金属半导体合金区域。 沉积多孔或非多孔低k电介质材料以在栅极电极和源极和漏极区域之间提供低的寄生电容。 栅极电介质保持原始介电常数,因为一次性栅极间隔物可防止在高温过程中吸收额外的氧。