摘要:
In one embodiment the disclosure relates to a method and a system for determining the corrected wavelength of a photon scattered by a sample. The method includes the steps of determining a wavelength of a photon scattered from a sample exposed to illuminating photons and passed through a tunable filter and correcting the determined wavelength of the photon as a function of the temperature of the tunable filter and as a function of the bandpass set point of the tunable filter. The step of correcting the determined wavelength can further include determining an offset and adding the offset to the determined wavelength of the photon.
摘要:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
摘要:
The disclosure relates to Method and Apparatus for Super Montage Large area Spectroscopic Imaging. In one embodiment of the disclosure, a method for producing a spectroscopic image of an object includes the steps of (a) irradiating the object with light to thereby produce from the object scattered and/or emitted (interchangeably “scattered”) light for each of a plurality of wavelengths; (b) producing separately for each of the plurality of wavelengths a plurality of substantially contiguous sub-images of the object; (c) compensating for spatial aberrations in ones of the sub-images for a select one of the plurality of wavelengths; (d) compensating for intensity aberrations between ones of the substantially contiguous sub-images for one of the plurality of wavelengths; and (e) combining the sub-images for the select one wavelength to thereby produce said spectroscopic image of the object.
摘要:
The disclosure relates to Method and Apparatus for Super Montage Large area Spectroscopic Imaging. In one embodiment of the disclosure, a method for producing a spectroscopic image of an object includes the steps of (a) irradiating the object with light to thereby produce from the object scattered and/or emitted light for each of a plurality of wavelengths; (b) producing separately for each of the plurality of wavelengths a plurality of substantially contiguous sub-images of the object; (c) compensating for spatial aberrations in ones of the sub-images for a select one of the plurality of wavelengths; (d) compensating for intensity aberrations between ones of the substantially contiguous sub-images for one of the plurality of wavelengths; and (e) combining the sub-images for the select one wavelength to thereby produce said spectroscopic image of the object.
摘要:
The disclosure relates to methods and apparatus for assessing occurrence of one or more hazardous agents in a sample by performing multipoint spectral analysis of the sample using a portable or hand-held device. Methods of employing Raman spectroscopy and other spectrophotometric methods are disclosed. Devices and systems suitable for performing such multipoint methods are also disclosed.
摘要:
The disclosure relates to a portable system having a fiber array spectral translator (“FAST”) for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
摘要:
The disclosure relates to Method and Apparatus for Super Montage Large area Spectroscopic Imaging. In one embodiment of the disclosure, a method for producing a spectroscopic image of an object includes the steps of (a) irradiating the object with light to thereby produce from the object scattered and/or emitted (interchangeably “scattered”) light for each of a plurality of wavelengths; (b) producing separately for each of the plurality of wavelengths a plurality of substantially contiguous sub-images of the object; (c) compensating for spatial aberrations in ones of the sub-images for a select one of the plurality of wavelengths; (d) compensating for intensity aberrations between ones of the substantially contiguous sub-images for one of the plurality of wavelengths; and (e) combining the sub-images for the select one wavelength to thereby produce said spectroscopic image of the object.
摘要:
System and method for differentiating tissue margins in a biological sample using pulsed laser excitation and time-gated detection. A region containing a biological tissue is irradiated with substantially monochromatic pulsed laser light to thereby produce Raman scattered photons. The Raman scattered photons are detected using time-gated detection to thereby obtain a Raman spectroscopic image from the irradiated region characteristic of either a neoplastic portion or a non-neoplastic portion of the region containing the biological tissue. A boundary between a neoplastic portion and a non-neoplastic portion is differentiated and the boundary location in the Raman spectroscopic image is displayed.
摘要:
A system and method for determining a disease state and clinical outcome of a sample. A sample is illuminated to produce Raman scattered photons, the Raman scattered photons are assessed to generate a Raman spectroscopic data set representative of the sample, wherein said Raman spectroscopic data set comprises at least one of: a Raman spectra of the sample and a spatially accurate wavelength resolved Raman image of the sample; the Raman spectroscopic data set is evaluated using a chemometric technique to classify the disease state of the sample as: acute, chronic, incipient, or none. In one embodiment, the chemontric technique is principle component analysis. In another embodiment, the sample is obtained prior to transplantation and analysis can determine the likelihood of rejection by a host.
摘要:
A method of ablating a viable biological pathogen in a sample. A viable biological pathogen in a portion of the sample is identified by irradiating the sample; assessing radiation scattered from the sample for radiation that exhibits a Raman shift characteristic of the viable biological pathogen, and delivering an ablating agent to the identified portion.