摘要:
A method of fabricating a semiconductor device includes forming a lower device on a lower semiconductor substrate, and forming an interlayer insulating film on the lower device. An upper semiconductor substrate is formed on the interlayer insulating film such that the interlayer insulating film is between the lower and upper semiconductor substrates. Upper trenches are formed within the upper semiconductor substrate. An upper device isolating film is formed within the upper trenches. The upper device isolating film is irradiated with ultraviolet light having a wavelength configured to break chemical bonds of impurities in the upper device isolating film to reduce an impurity concentration thereof.
摘要:
A method of fabricating a semiconductor device includes forming a lower device on a lower semiconductor substrate, and forming an interlayer insulating film on the lower device. An upper semiconductor substrate is formed on the interlayer insulating film such that the interlayer insulating film is between the lower and upper semiconductor substrates. Upper trenches are formed within the upper semiconductor substrate. An upper device isolating film is formed within the upper trenches. The upper device isolating film is irradiated with ultraviolet light having a wavelength configured to break chemical bonds of impurities in the upper device isolating film to reduce an impurity concentration thereof.
摘要:
An integrated circuit device includes a plurality of stacked circuit layers, at least one of the plurality of circuit layers including a composite interlayer insulation layer including laterally adjacent first and second insulating material regions having different mechanical strengths and dielectric properties and a plurality of circuit components disposed in the composite interlayer insulation layer. The first insulating material region may have a lower dielectric constant and a lower mechanical strength than the second insulating material region such that, for example, the first insulating material region may be positioned near signal lines or other circuit features to reduce capacitance while using the second insulating material region near a location that is susceptible to localized mechanical stress, such as a fuse location, an external connection bonding location or a scribe line location.
摘要:
A method of forming through silicon vias (TSVs) includes forming a primary via hole in a semiconductor substrate, depositing low-k dielectric material in the primary via hole, forming a secondary via hole by etching the low-k dielectric in the primary via hole, in such a manner that a via insulating layer and an inter metal dielectric layer of the low-k dielectric layer are simultaneously formed. The via insulating layer is formed of the low-k dielectric material on sidewalls and a bottom surface of the substrate which delimit the primary via hole and the inter metal dielectric layer is formed on an upper surface of the substrate. Then a metal layer is formed on the substrate including in the secondary via hole, and the metal layer is selectively removed from an upper surface of the semiconductor substrate.
摘要:
A method of forming through silicon vias (TSVs) includes forming a primary via hole in a semiconductor substrate, depositing low-k dielectric material in the primary via hole, forming a secondary via hole by etching the low-k dielectric in the primary via hole, in such a manner that a via insulating layer and an inter metal dielectric layer of the low-k dielectric layer are simultaneously formed. The via insulating layer is formed of the low-k dielectric material on sidewalls and a bottom surface of the substrate which delimit the primary via hole and the inter metal dielectric layer is formed on an upper surface of the substrate. Then a metal layer is formed on the substrate including in the secondary via hole, and the metal layer is selectively removed from an upper surface of the semiconductor substrate.
摘要:
An integrated circuit device includes a plurality of stacked circuit layers, at least one of the plurality of circuit layers including a composite interlayer insulation layer including laterally adjacent first and second insulating material regions having different mechanical strengths and dielectric properties and a plurality of circuit components disposed in the composite interlayer insulation layer. The first insulating material region may have a lower dielectric constant and a lower mechanical strength than the second insulating material region such that, for example, the first insulating material region may be positioned near signal lines or other circuit features to reduce capacitance while using the second insulating material region near a location that is susceptible to localized mechanical stress, such as a fuse location, an external connection bonding location or a scribe line location.