摘要:
A method of fabricating a semiconductor device includes forming a first trench and a second trench in a semiconductor substrate, forming a first insulator to completely fill the first trench, the first insulator covering a bottom surface and lower sidewalls of the second trench and exposing upper sidewalls of the second trench, and forming a second insulator on the first insulator in the second trench.
摘要:
A method of fabricating a semiconductor device includes forming a first trench and a second trench in a semiconductor substrate, forming a first insulator to completely fill the first trench, the first insulator covering a bottom surface and lower sidewalls of the second trench and exposing upper sidewalls of the second trench, and forming a second insulator on the first insulator in the second trench.
摘要:
A semiconductor device includes a first structure having a recess having a bottom and opposing side surfaces, and a second structure conformally disposed on the bottom and side surfaces of the recess. The second structure includes a multilayer having two layers having a thickness substantially smaller than a width of the recess. Methods of manufacturing a semiconductor device include providing a first structure having a recess in a deposition chamber and flowing first and second reactants over the first structure for a first period at first and second flow rates. Then, the flow rates of the first second reactants to the first structure are substantially reduced for a pause period. The first and second reactants are then flowed over the first structure for a second period at third and fourth flow rates. The deposition and pause steps may be repeated until a multilayer having a desired thickness is formed.
摘要:
A semiconductor device includes a substrate having a trench, a liner layer pattern on sidewalls and a bottom surface of the trench, the liner layer pattern including a first oxide layer pattern and a second oxide layer pattern, a diffusion blocking layer pattern on the liner layer pattern, and an isolation layer pattern in the trench on the diffusion blocking layer pattern.
摘要:
Disclosed are methods for fabricating semiconductor devices incorporating a composite trench isolation structure comprising a first oxide pattern, a SOG pattern and a second oxide pattern wherein the oxide patterns enclose the SOG pattern. The methods include the deposition of a first oxide layer and a SOG layer to fill recessed trench regions formed in the substrate. The first oxide layer and the SOG layer are then subjected to a planarization sequence including a CMP process followed by an etchback process to form a composite structure having a substantially flat upper surface that exposes both the oxide and the SOG material. The second oxide layer is then applied and subjected to a similar CMP/etchback sequence to obtain a composite structure having an upper surface that is recessed relative to a plane defined by the surfaces of adjacent active regions.
摘要:
A method is provided for forming silicon oxide layers during the processing of semiconductor devices by applying a SOG layer including polysilazane to a substrate and then substantially converting the SOG layer to a silicon oxide layer using an oxidant solution. The oxidant solution may include one or more oxidants including, for example, ozone, peroxides, permanganates, hypochlorites, chlorites, chlorates, perchlorates, hypobromites, bromites, bromates, hypoiodites, iodites, iodates and strong acids.
摘要:
In a method of manufacturing a non-volatile semiconductor device, a mask structure is formed on a substrate. A trench is formed by partially etching the substrate using the mask structure. A preliminary isolation layer pattern is formed on the substrate to fill the trench. The preliminary isolation layer has an upper face lower than that of the mask structure. A capping layer pattern is formed on the preliminary isolation layer pattern. An opening and an isolation layer pattern are formed by removing the mask structure and a portion on a sidewall of the preliminary isolation layer pattern adjacent to the mask structure. After forming a tunnel oxide layer, a floating gate is formed on the tunnel oxide layer and a sidewall of the isolation layer pattern.
摘要:
A method of forming a SOG insulation layer of a semiconductor device comprises forming the SOG insulation layer on a substrate having a stepped pattern by using a polysilazane in a solution state, performing a pre-bake process for removing solvent elements of the insulation layer at a temperature of 50 to 350° C., performing a hard bake process for restraining particles from forming at a temperature of 350 to 500° C., and annealing at a temperature of 600 to 1200° C. The method of the invention further includes planarizing the insulation layer between the hard bake process and the annealing step. Also, the hard bake process can be omitted.
摘要:
A method of manufacturing a semiconductor device includes an improved technique of filling a trench to provide the resulting semiconductor device with better characteristics and higher reliability. The method includes forming a trench in a semiconductor layer, forming a first layer on the semiconductor layer using a silicon source and a nitrogen source to fill the trench, curing the first layer using an oxygen source, and annealing the second layer. The method may also be used to form other types of insulating layers such as an interlayer insulating layer.
摘要:
One embodiment of a method of fabricating a flash memory device includes forming a trench mask pattern, which includes a gate insulation pattern and a charge storage pattern stacked in sequence, on a semiconductor substrate; etching the semiconductor substrate using the trench mask pattern as an etch mask to form trenches defining active regions; and sequentially forming lower and upper device isolation patterns in the trench. After sequentially forming an intergate insulation film and a control gate film on the upper device isolation pattern, the control gate film, the intergate insulation pattern and the gloating gate pattern are formed, thereby providing gate lines crossing over the active regions.