摘要:
A method for amplifying a nucleic acid using a solid phase material coated with a carboxyl group or an amino group is provided. The method includes contacting a mixture of a nucleic acid containing sample and a salt solution with the solid phase material coated with a carboxyl group or an amino group to form a nucleic acid-solid phase material complex, washing the nucleic acid-solid phase material complex with a wash buffer, and adding a reaction solution for amplifying a nucleic acid to the nucleic acid-solid phase material complex to perform an amplification reaction.
摘要:
A method of isolating nucleic acid using a carbon nanotube is provided. The method includes contacting a mixture of a sample containing nucleic acid and a salt solution with a carbon nanotube to form a nucleic acid-carbon nanotube composite; washing the nucleic acid-carbon nanotube composite with a washing buffer; and eluting the nucleic acid from the nucleic acid-carbon nanotube composite.
摘要:
Provided are a method and apparatus for amplifying nucleic acids. The method includes introducing into a reaction vessel via different inlet channels a reactant aqueous solution containing reactants for nucleic acid amplification and a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction, creating a plurality of reactant aqueous solution droplets surrounded by the fluid by contacting the reactant aqueous solution with the fluid in the reaction vessel, and amplifying the nucleic acids in the reactant aqueous solution droplets. The apparatus includes a substrate, a reaction vessel formed inside of the substrate, at least one first inlet channel formed inside the substrate, connected to an end of the reaction vessel, and allowing introduction of a reactant aqueous solution containing reactants for nucleic acid amplification into the reaction vessel, a second inlet channel formed inside the substrate, connected to the end of the reaction vessel, and allowing introduction of a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction into the reaction vessel, and a heating unit installed on the substrate in such a way to thermally contact with the substrate and heating the substrate.
摘要:
An apparatus for amplifying nucleic acids includes a substrate, a reaction vessel formed inside of the substrate, at least one first inlet channel formed inside the substrate, connected to an end of the reaction vessel, and allowing introduction of a reactant aqueous solution containing reactants for nucleic acid amplification into the reaction vessel, a second inlet channel formed inside the substrate, connected to the end of the reaction vessel, and allowing introduction of a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction into the reaction vessel, and a heating unit installed on the substrate in such a way to thermally contact with the substrate and heating the substrate, wherein the reactant aqueous solution contacts the fluid to create a plurality of droplets surrounded by the fluid in the reaction vessel and the nucleic acids are amplified in the reactant aqueous solution droplets.
摘要:
A method for isolating a nucleic acid is provided. The method includes mixing a nucleic acid-containing sample, a salt solution, and alumina; isolating the alumina having the nucleic acid attached thereto from the liquid; washing the alumina having the nucleic acid attached thereto; and eluting the nucleic acid from the alumina.
摘要:
A method and apparatus for amplifying nucleic acids. The method includes introducing into a reaction vessel via different inlet channels a reactant aqueous solution containing reactants for nucleic acid amplification and a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction, creating a plurality of reactant aqueous solution droplets surrounded by the fluid by contacting the reactant aqueous solution with the fluid in the reaction vessel, and amplifying the nucleic acids in the reactant aqueous solution droplets. The apparatus includes a substrate, a reaction vessel formed inside of the substrate, at least one first inlet channel formed inside the substrate, connected to an end of the reaction vessel, and allowing introduction of a reactant aqueous solution containing reactants for nucleic acid amplification into the reaction vessel, a second inlet channel formed inside the substrate, connected to the end of the reaction vessel, and allowing introduction of a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction into the reaction vessel, and a heating unit installed on the substrate in such a way to thermally contact with the substrate and heating the substrate.
摘要:
An apparatus for amplifying nucleic acids. The apparatus includes a substrate, a reaction vessel formed inside of the substrate, at least one first inlet channel formed inside the substrate, connected to an end of the reaction vessel, and allowing introduction of a reactant aqueous solution containing reactants for nucleic acid amplification into the reaction vessel, a second inlet channel formed inside the substrate, connected to the end of the reaction vessel, and allowing introduction of a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction into the reaction vessel, and a heating unit installed on the substrate in such a way to thermally contact with the substrate and heating the substrate.
摘要:
A method and apparatus for amplifying nucleic acids. The method includes introducing into a reaction vessel via different inlet channels a reactant aqueous solution containing reactants for nucleic acid amplification and a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction, creating a plurality of reactant aqueous solution droplets surrounded by the fluid by contacting the reactant aqueous solution with the fluid in the reaction vessel, and amplifying the nucleic acids in the reactant aqueous solution droplets. The apparatus includes a substrate, a reaction vessel formed inside of the substrate, at least one first inlet channel formed inside the substrate, connected to an end of the reaction vessel, and allowing introduction of a reactant aqueous solution containing reactants for nucleic acid amplification into the reaction vessel, a second inlet channel formed inside the substrate, connected to the end of the reaction vessel, and allowing introduction of a fluid that is phase-separated from the reactant aqueous solution and does not participate in amplification reaction into the reaction vessel, and a heating unit installed on the substrate in such a way to thermally contact with the substrate and heating the substrate.
摘要:
There is provided a biomolecule FET enhancing a sensitivity. The biomolecule FET includes a substrate, first and second impurity regions formed on both sides of the substrate, and doped with impurities of a polarity opposite to that of the substrate, a gate formed on the substrate and being in contact with the first and second impurity regions, and a probe biomolecule attached to the gate. A region of the gate adjacent to the first impurity region is wider than a region thereof adjacent to the second impurity region. A density of the probe biomolecule attached to the surface of the gate is increased, and when detecting a level of hybridization of the probe biomolecule and the target biomolecule, its sensitivity is improved.
摘要:
There is provided a biomolecule FET enhancing a sensitivity. The biomolecule FET includes a substrate, first and second impurity regions formed on both sides of the substrate, and doped with impurities of a polarity opposite to that of the substrate, a gate formed on the substrate and being in contact with the first and second impurity regions, and a probe biomolecule attached to the gate. A region of the gate adjacent to the first impurity region is wider than a region thereof adjacent to the second impurity region. A density of the probe biomolecule attached to the surface of the gate is increased, and when detecting a level of hybridization of the probe biomolecule and the target biomolecule, its sensitivity is improved.