摘要:
A method of forming a SOG insulation layer of a semiconductor device comprises the steps of forming the SOG insulation layer on a substrate having a stepped pattern using a solution containing a polysilazane in an amount of less than 20% by weight in terms concentration of solid content, performing a pre-bake process for removing solvent ingredients in the insulation layer at a temperature of 50 to 350° C., and annealing at a temperature of 600 to 1200° C. The method of the invention further includes performing a hard bake process at a temperature of about 400° C. between the pre-bake process and the annealing step. Also, the polysilazane is desirably contained in an amount of 10 to 15% by weight.
摘要:
A method of forming a SOG insulation layer of a semiconductor device comprises forming the SOG insulation layer on a substrate having a stepped pattern by using a polysilazane in a solution state, performing a pre-bake process for removing solvent elements of the insulation layer at a temperature of 50 to 350° C., performing a hard bake process for restraining particles from forming at a temperature of 350 to 500° C., and annealing at a temperature of 600 to 1200° C. The method of the invention further includes planarizing the insulation layer between the hard bake process and the annealing step. Also, the hard bake process can be omitted.
摘要:
Methods of forming material in a gap in a substrate include forming a pattern to define a gap on a substrate. A bottom oxide layer is formed on a surface of the substrate and substantially filling the gap. The bottom oxide layer is etched back inside an opening in the gap to expose side walls of the gap so that a residual bottom oxide layer remains at a bottom of the gap. A top oxide layer is selectively deposited on the residual bottom oxide layer, wherein the top oxide layer is deposited in a first direction toward the opening at a faster rate than in a second direction away from the side walls.
摘要:
A method is provided for forming silicon oxide layers during the processing of semiconductor devices by applying a SOG layer including polysilazane to a substrate and then substantially converting the SOG layer to a silicon oxide layer using an oxidant solution. The oxidant solution may include one or more oxidants including, for example, ozone, peroxides, permanganates, hypochlorites, chlorites, chlorates, perchlorates, hypobromites, bromites, bromates, hypoiodites, iodites, iodates and strong acids.
摘要:
A method is provided for forming silicon oxide layers during the processing of semiconductor devices by applying a SOG layer including polysilazane to a substrate and then substantially converting the SOG layer to a silicon oxide layer using an oxidant solution. The oxidant solution may include one or more oxidants including, for example, ozone, peroxides, permanganates, hypochlorites, chlorites, chlorates, perchlorates, hypobromites, bromites, bromates, hypoiodites, iodites, iodates and strong acids.
摘要:
A method of forming a trench-type device isolation layer in which a trench is filled through two steps, wherein a polysilazane solution is coated on a semiconductor substrate, in which a trench for device isolation layer is formed, in a spin on glass (SOG) manner to form an SOG layer filling a predetermined portion of the trench. In order to maintain a conformal coating thickness without overfilling the trench, the polysilazane solution preferably has a solid-state perhydro polysilazane ([SiH2NH]n) of between about 5 to about 15 percent by weight. Following formation of the SOG layer, a subsequent annealing process is carried out. The SOG layer is etched to make a top surface of the remaining SOG layer recessed down to a degree of about 1000 Å from an inlet of the trench, and a remaining space of the trench is filled with an ozone TEOS USG layer or an HDP CVD layer.
摘要:
A method is provided for forming silicon oxide layers during the processing of semiconductor devices by applying a SOG layer including polysilazane to a substrate and then substantially converting the SOG layer to a silicon oxide layer using an oxidant solution. The oxidant solution may include one or more oxidants including, for example, ozone, peroxides, permanganates, hypochlorites, chlorites, chlorates, perchlorates, hypobromites, bromites, bromates, hypoiodites, iodites, iodates and strong acids.
摘要:
Disclosed are methods for forming a silicon oxide layer of a semiconductor device capable of insulating between fine conductive patterns without causing a process failure, and for forming a wiring having the silicon oxide layer. After forming conductive patterns on a semiconductor substrate, an anti-oxidation layer is sequentially formed on the conductive patterns and on the semiconductor substrate. The anti-oxidation layer prevents an oxidant from penetrating into the conductive patterns and the semiconductor substrate. A reflowable oxide layer is formed by coating a reflowable oxidizing material on the anti-oxidation layer while burying the conductive patterns. The silicon oxide layer is formed by thermally treating the reflowable oxide layer. Then, the silicon oxide layer filled between conductive patterns and the anti-oxidation layer exposed to the semiconductor substrate are etched so as to form a contact hole, thereby forming the wiring of the semiconductor device. Thus, a planar silicon oxide layer is formed between conductive patterns having a fine interval therebetween without creating a void. In addition, a metal layer pattern, which acts as a conductor in the conductive patterns, can be prevented from being oxidized when the silicon oxide layer is formed.
摘要:
One embodiment of a method of fabricating a flash memory device includes forming a trench mask pattern, which includes a gate insulation pattern and a charge storage pattern stacked in sequence, on a semiconductor substrate; etching the semiconductor substrate using the trench mask pattern as an etch mask to form trenches defining active regions; and sequentially forming lower and upper device isolation patterns in the trench. After sequentially forming an intergate insulation film and a control gate film on the upper device isolation pattern, the control gate film, the intergate insulation pattern and the gloating gate pattern are formed, thereby providing gate lines crossing over the active regions.
摘要:
A film is formed on a substrate including conductive patterns or trenches using a composition that included a solvent and perhydro-polysilazane having a weight average molecular weight of about 1,800 to 3,000 and a molecular weight distribution of more than about 2.2 to about 3.0. The film is changed into a silicon oxide film, and then an opening is formed through the silicon oxide film. A contact is formed in the opening by filling the opening with conductive material. The silicon oxide film of perhydro-polysilazane having low molecular weight becomes dense and uniform.