摘要:
To improve the reliability of a transistor as well as to inhibit fluctuation in electric characteristics. A display device includes a pixel portion and a driver circuit portion outside the pixel portion; the pixel portion includes a pixel transistor, a first insulating film covering the pixel transistor and including an inorganic material, a second insulating film including an organic material over the first insulating film, and a third insulating film including an inorganic material over the second insulating film; and the driver circuit portion includes a driving transistor to supply a signal to the pixel transistor, the first insulating film covering the driving transistor, and the second insulating film over the first insulating film, and further includes a region in which the third insulating film is not formed over the second insulating film or a region in which the second insulating film is not covered with the third insulating film.
摘要:
Variation in the electrical characteristics of transistors is minimized and reliability of the transistors is improved. A display device includes a pixel portion 104 and a driver circuit portion 106 outside the pixel portion. The pixel portion includes a pixel transistor, a first insulating layer 122 which covers the pixel transistor and includes an inorganic material, a second insulating layer 124 which is over the first insulating layer and includes an organic material, and a third insulating layer 128 which is over the second insulating layer and includes an inorganic material. The driver circuit portion includes a driving transistor for supplying a signal to the pixel transistor, and the first insulating layer covering the driving transistor. The second insulating layer is not formed in the driver circuit portion.
摘要:
A semiconductor device includes: a transistor including a gate electrode, a gate insulating film over the gate electrode, a semiconductor layer over the gate insulating film, and a source electrode and a drain electrode over the semiconductor layer; a first insulating film comprising an inorganic material over the transistor; a second insulating film comprising an organic material over the first insulating film; a first conductive film over the second insulating film and in a region overlapping with the semiconductor layer; a third insulating film comprising an inorganic material over the first conductive film; and a second conductive film over the third insulating film and in a region overlapping with the first conductive film. The absolute value of a first potential applied to the first conductive film is greater than the absolute value of a second potential applied to the second conductive film.
摘要:
To provide a novel semiconductor device in which a reduction in channel length is controlled. The semiconductor device includes an oxide semiconductor layer having a crystal part, and a source electrode layer and a drain electrode layer which are in contact with the oxide semiconductor layer. The oxide semiconductor layer includes a channel formation region and an n-type region in contact with the source electrode layer or the drain electrode layer. The crystal orientation of the crystal part is different between the channel formation region and the n-type region.
摘要:
An object is to suppress conducting-mode failures of a transistor that uses an oxide semiconductor film and has a short channel length. A semiconductor device includes a gate electrode 304, a gate insulating film 306 formed over the gate electrode, an oxide semiconductor film 308 over the gate insulating film, and a source electrode 310a and a drain electrode 310b formed over the oxide semiconductor film. The channel length L of the oxide semiconductor film is more than or equal to 1 μm and less than or equal to 50 μm. The oxide semiconductor film has a peak at a rotation angle 2θ in the vicinity of 31° in X-ray diffraction measurement.
摘要:
The semiconductor conductor device includes a gate electrode 106, an oxide semiconductor film 110, a source electrode 114a and a drain electrode 114b, and a channel region formed in the oxide semiconductor film. The channel region is formed between a first side surface 214a of the source electrode and a second side surface 214b of the drain electrode opposite to the first side surface 214a. The oxide semiconductor film has a side surface which overlaps with the gate electrode, which has a first high resistance region positioned between a first region 206a that is the nearest to one end 314a of the first side surface 214a and a second region 206b that is the nearest to one end 314b of the second side surface 214b. The first high resistance region has a corrugated side surface or the like.
摘要:
A semiconductor device includes a gate electrode; a gate insulating film over the gate electrode; an oxide semiconductor film in contact with the gate insulating film and including a channel formation region which overlaps with the gate electrode; a source electrode and a drain electrode over the oxide semiconductor film; and an oxide insulating film over the oxide semiconductor film, the source electrode, and the drain electrode. The source electrode and the drain electrode each include a first metal film having an end portion at the end of the channel formation region, a second metal film over the first metal film and containing copper, and a third metal film over the second metal film. The second metal film is formed on the inner side than the end portion of the first metal film.
摘要:
An object is to provide a manufacturing method of a microcrystalline silicon film with improved adhesion between an insulating film and the microcrystalline silicon film. The microcrystalline silicon film is formed in the following manner. Over an insulating film, a microcrystalline silicon grain having a height that allows the microcrystalline silicon grain to be completely oxidized by later plasma oxidation (e.g., a height greater than 0 nm and less than or equal to 5 nm), or a microcrystalline silicon film or an amorphous silicon film having a thickness that allows the microcrystalline silicon film or the amorphous silicon film to be completely oxidized by later plasma oxidation (e.g., a thickness greater than 0 nm and less than or equal to 5 nm) is formed. Plasma treatment in an atmosphere including oxygen or plasma oxidation is performed on the microcrystalline silicon grain, the microcrystalline silicon film, or the amorphous silicon film, so that a silicon oxide grain or a silicon oxide film is formed over the insulating film. A microcrystalline silicon film is formed over the silicon oxide grain or the silicon oxide film.