摘要:
A programming and erase method that extends erase time degradation of nonvolatile memory devices by using a constant erase voltage and a set of program voltages, where the average program voltage of the set of the program voltages is approximately equal to the constant erase voltage.
摘要:
A voltage control circuit that narrows the distribution of threshold voltages of memory cells by using nonlinearly incremented programming voltages. To do so, the voltage control circuit applies to the memory cells a first program pulse of a first voltage, a second program pulse of a second voltage to the memory cell, and a third program pulse of a third voltage, where the difference between the third voltage and the second voltage is less than the difference between the second voltage and the first voltage.
摘要:
An erase operation is performed on a non-volatile memory cell with an oxide-nitride-oxide structure by using a negative gate erase voltage during an erase procedure to improve the speed and performance of the non-volatile memory cell after many program-erase cycles. During the erase procedure, an erase cycle is applied followed by a read cycle until the cell has a threshold erased below a desired value. For the initial erase cycle in the procedure, an initial negative gate voltage is applied. In subsequent erase cycles, a sequentially decreasing negative gate voltage is applied until the threshold is reduced below the desired value. In one embodiment, after erase is complete, the last negative gate voltage value applied is stored in a separate memory. After a subsequent programming when the erase procedure is again applied, the initial negative gate voltage applied is the negative gate voltage value for the cell stored in memory.
摘要:
An erase operation is performed on a non-volatile memory cell with an oxide-nitride-oxide structure having charge stored near both the source and drain. During the erase operation, a negative gate erase voltage is applied along with a positive source and drain voltage to improve the speed of erase operations and performance of the non-volatile memory cell after many program-erase cycles.
摘要:
One aspect of the present invention relates to a system and method for improving memory retention in flash memory devices. Retention characteristics may be enhanced by nitridating the bottom silicon dioxide layer of the ONO dielectric. To further mitigate charge leakage within the memory cell, the charge retention layer, or silicon nitride layer of the ONO dielectric, may be passivated via a hydrogen anneal process in order to reduce the number of charge traps, and thus, the amount of charge loss. The present invention also provides a monitoring and feedback-relay system to automatically control ONO formation such that a desired ONO dielectric stack is obtained. The present invention may be accomplished in part by employing a measurement system to measure properties and characteristics of the ONO stack during the critical formation steps of the bottom silicon dioxide layer and a silicon nitride layer.
摘要:
An erase operation is performed on a non-volatile memory cell with an oxide-nitride-oxide structure by using an initial negative gate erase voltage to improve the speed and performance of the non-volatile memory cell after many program-erase cycles. By utilizing a negative gate erase voltage, the cell does not require increased erase time to reduce the cell threshold and avoid incomplete erase conditions as the number of program-erase cycles increases.
摘要:
An integrated circuit (IC) device may include a first portion having a plurality of volatile memory cells; and a second portion coupled by a data transfer path to the first portion, the second portion including a plurality of nonvolatile memory cells, each nonvolatile memory cell including at least one resistive element programmable more than once between different resistance values. A memory device may also include variable impedance elements accessible by access bipolar junction transistors (BJTs) having at least a portion formed by a semiconductor layer formed over a substrate. A memory device may also include a plurality of memory elements that each includes a dielectric layer formed between a first and second electrode, the dielectric layer including a solid electrolyte with a soluble metal having a mobility less than that of silver in a germanium disulfide.
摘要:
A system and methodology is provided for programming first and second bits of a memory array of dual bit memory cells at a substantially high delta VT. The substantially higher VT assures that the memory array will maintain programmed data and erase data consistently after higher temperature stresses and/or customer operation over substantial periods of time. At a substantially higher delta VT, programming of the first bit of the memory cell causes the second bit to program harder and faster due to the shorter channel length. Therefore, the present invention employs selected gate and drain voltages and programming pulse widths during programming of the first and second bit that assures a controlled first bit VT and slows down programming of the second bit. Furthermore, the selected programming parameters keep the programming times short without degrading charge loss.
摘要:
Dummy columns of memory cells formed during fabrication outside edge columns are connected to the actual used memory cells of sectors or the like. The columns of dummy memory cells are compensated by floating the dummy memory cells during normal programming and erase cycles, or alternatively, by programming and erasing the dummy memory cells along with the actual used memory cells in the sector. By treating the dummy memory cells similar to the actual used cells, charge that leaks into the dummy cells during fabrication and normal operation that has deleterious effects at higher stress temperatures and/or due to the longevity of customer operation is substantially eliminated.
摘要:
One aspect of the present invention relates to a method of forming a non-volatile semiconductor memory device, involving the sequential or non-sequential steps of forming a charge trapping dielectric over a substrate, the substrate having a core region and a periphery region; removing at least a portion of the charge trapping dielectric in the periphery region; forming a gate dielectric in the periphery region; forming buried bitlines in the core region; and forming gates in the core region and the periphery region.