摘要:
A programming and erase method that extends erase time degradation of nonvolatile memory devices by using a constant erase voltage and a set of program voltages, where the average program voltage of the set of the program voltages is approximately equal to the constant erase voltage.
摘要:
An erase operation is performed on a non-volatile memory cell with an oxide-nitride-oxide structure by using a negative gate erase voltage during an erase procedure to improve the speed and performance of the non-volatile memory cell after many program-erase cycles. During the erase procedure, an erase cycle is applied followed by a read cycle until the cell has a threshold erased below a desired value. For the initial erase cycle in the procedure, an initial negative gate voltage is applied. In subsequent erase cycles, a sequentially decreasing negative gate voltage is applied until the threshold is reduced below the desired value. In one embodiment, after erase is complete, the last negative gate voltage value applied is stored in a separate memory. After a subsequent programming when the erase procedure is again applied, the initial negative gate voltage applied is the negative gate voltage value for the cell stored in memory.
摘要:
An erase operation is performed on a non-volatile memory cell with an oxide-nitride-oxide structure having charge stored near both the source and drain. During the erase operation, a negative gate erase voltage is applied along with a positive source and drain voltage to improve the speed of erase operations and performance of the non-volatile memory cell after many program-erase cycles.
摘要:
One aspect of the present invention relates to a system and method for improving memory retention in flash memory devices. Retention characteristics may be enhanced by nitridating the bottom silicon dioxide layer of the ONO dielectric. To further mitigate charge leakage within the memory cell, the charge retention layer, or silicon nitride layer of the ONO dielectric, may be passivated via a hydrogen anneal process in order to reduce the number of charge traps, and thus, the amount of charge loss. The present invention also provides a monitoring and feedback-relay system to automatically control ONO formation such that a desired ONO dielectric stack is obtained. The present invention may be accomplished in part by employing a measurement system to measure properties and characteristics of the ONO stack during the critical formation steps of the bottom silicon dioxide layer and a silicon nitride layer.
摘要:
An erase operation is performed on a non-volatile memory cell with an oxide-nitride-oxide structure by using an initial negative gate erase voltage to improve the speed and performance of the non-volatile memory cell after many program-erase cycles. By utilizing a negative gate erase voltage, the cell does not require increased erase time to reduce the cell threshold and avoid incomplete erase conditions as the number of program-erase cycles increases.
摘要:
An over-erased bit correction structure is provided for performing a correction operation on over-erased memory cells in an array of flash EEPROM memory cells during programming operations so as to render high endurance. Sensing circuitry (23) is used to detect column leakage current indicative of an over-erased bit. If an over-erased bit is determined, a pulse counter (25) is activated so as to apply programming pulses to the control gate of the selected memory cell so as to program back the negative threshold voltage of the over-erased bit to a positive voltage.
摘要:
A computer system including telephone functionality. The computer system includes a first keyboard and a first display. The computer system also includes a processor having at least a first functional unit and a second functional unit, and further includes a phone portion. The computer system may operate in a first mode, a second mode, or a third mode. In the first mode, only the phone portion is activated, and the phone portion provides a functionality of placing and receiving phone calls without being removed from the computer system. In the second mode, the phone portion and first functional unit of the processor are activated. In the third mode, each of the phone portion, the first functional unit, and the second functional unit are activated.
摘要:
Methods of replacing/reforming a top oxide around a charge storage element of a memory cell and methods of improving quality of a top oxide around a charge storage element of a memory cell are provided. The method can involve removing a first poly over a first top oxide from the memory cell; removing the first top oxide from the memory cell; and forming a second top oxide around the charge storage element. The second top oxide can be formed by oxidizing a portion of the charge storage element or by forming a sacrificial layer over the charge storage element and oxidizing the sacrificial layer to a second top oxide.
摘要:
A dual node memory device and methods for fabricating the device are provided. In one embodiment the method comprises forming a layered structure with an insulator layer, a charge storage layer, a buffer layer, and a sacrificial layer on a semiconductor substrate. The layers are patterned to form two spaced apart stacks and an exposed substrate portion between the stacks. A gate insulator and a gate electrode are formed on the exposed substrate, and the sacrificial layer and buffer layer are removed. An additional insulator layer is deposited overlying the charge storage layer to form insulator-storage layer-insulator memory storage areas on each side of the gate electrode. Sidewall spacers are formed at the sidewalls of the gate electrode overlying the storage areas. Bit lines are formed in the substrate spaced apart from the gate electrode, and a word line is formed that contacts the gate electrode and the sidewall spacers.
摘要:
A device includes a substrate and multiple wells formed over the substrate and isolated from one another by dielectric trenches. The device further includes multiple memory elements formed over the wells, each of the memory elements extending approximately perpendicular to the wells and including a material doped with n-type impurities. The device also includes multiple source/drain regions, each source/drain region formed within one of multiple trenches and inside one of the plurality of wells between a pair of the memory elements, each of the source/drain regions implanted with p-type impurities. The device further includes a first substrate contact formed in a first one of the multiple trenches through a first one of the wells into the substrate and a second substrate contact formed in a second one of the multiple trenches through a second one of the wells into the substrate.