Abstract:
The present invention aims to provide a curable resin composition which gives a cured product having a low linear expansion coefficient. The curable resin composition of the present invention contains, as essential components, (A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups per molecule, (B) a compound containing at least two SiH groups per molecule, (C) a hydrosilylation catalyst, (D) a silicone compound having at least one carbon-carbon double bond reactive with a SiH group per molecule, and (E) an inorganic filler.
Abstract:
The present invention is to provide a photocatalyst electrode less likely to suffer from peeling of hematite-based crystal particles from a substrate and having higher catalytic activity than ever before. A method for producing a photocatalyst electrode includes: an in-process particle of heating a raw material solution to form in-process particles, the raw material solution including a raw material solvent and a hematite raw material dispersed therein, the in-process particle forming step including heating the raw material solution in a closed vessel for more than 12 hours; and a burning step of burning the in-process particles. In this way, a photocatalyst electrode with high catalytic activity can be produced.
Abstract:
A molded resin body for surface-mounted light-emitting device has a cured resin body integrally molded with a plurality of leads and a concave portion to which the plurality of leads are exposed at the bottom portion, in which the ten-point average roughness (Rz) of the opening surface of the concave portion is 1 μm to 10 μm, the glass transition temperature of the cured resin body is 10° C. or higher and the glass transition temperature is a value measured using a thermomechanical analyzer (TMA) under the conditions of a temperature range of −50 to 250° C., a temperature elevation rate of 5° C./min, and a sample size length of 1 to 5 mm, and the optical reflectance at 460 nm of the opening surface of the concave portion is 80% or more and the optical reflectance retention rate on the opening surface after heating the molded resin body at 180° C. for 72 hours is 90% or more.
Abstract:
The present invention aims to provide a curable resin composition which gives a cured product having a low linear expansion coefficient. The curable resin composition of the present invention contains, as essential components, (A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups per molecule, (B) a compound containing at least two SiH groups per molecule, (C) a hydrosilylation catalyst, (D) a silicone compound having at least one carbon-carbon double bond reactive with a SiH group per molecule, and (E) an inorganic filler.
Abstract:
A molded resin body for surface-mounted light-emitting device has cured resin body integrally molded with a plurality of leads and a concave portion to which the plurality of leads are exposed at the bottom portion, in which the ten-point average roughness (Rz) of the opening surface of the concave portion is 1 μm to 10 μm, the glass transition temperature of the cured resin body is 10° C. or higher and the glass transition temperature is a value measured using a thermomechanical analyzer (TMS) under the conditions of a temperature range of −50 to 250° C., a temperature elevation rate of 5° C./min, and a sample size length of 1 to 5 mm, and the optical reflectance at 460 nm of the opening surface of the concave portion is 80% or more and the optical reflectance retention rate on the opening surface after heating the molded resin body at 180° C. for 72 hours is 90% or more.