Abstract:
The invention relates to a lighting apparatus (2) for providing light for processing an object (3). A ring of light sources generates processing light for processing the object and an imaging unit (9) images the ring of light sources onto a working plane (16) in which the object is to be processed, wherein the ring of light sources and the imaging unit are configured such that images of the light sources in the working plane are distributed equidistantly in a direction being parallel to a diameter of the imaged ring in the working plane. The ring arrangement allows for a high quality imaging with a relatively small and technically simple optical element. A relatively small lighting apparatus can therefore be provided, which can be used for applications like laser printing.
Abstract:
The invention describes a method of manufacturing a VCSEL module (100) comprising at least one VCSEL chip (33) with an upper side (U) and a lower side (L) and with a plurality of VCSEL units (55) on a common carrier structure (35), the VCSEL units (55) comprising a first doped layer (50) of a first type facing towards the lower side (L) and a second doped layer (23) of a second type facing towards the upper side (U). The method comprises the steps of dividing the VCSEL chip (33) into a plurality of subarrays (39a, 39b, 39c, 39d, 39e, 39f, 39g, 39h, 39i) with at least one VCSEL unit (55) each, electrically connecting at least some of the subarrays (39a, 39b, 39c, 39d, 39e, 39f, 39g, 39h, 39i) in series. The invention also describes a VCSEL module (100) manufactured in such process.
Abstract:
The invention describes a light emitting device (100). The light emitting device (100) comprises at least one light emitting structure (110), at least one processing layer (120) and at least one optical structure (130). The optical structure (130) comprises at least one material processed by means of processing light (150). The at least one processing layer (120) is arranged to reduce reflection of the processing light (150) in a direction of the optical structure (130) at least by 50%, preferably at least by 80%, more preferably at least by 95% and most preferably at least by 99% during processing of the material by means of the processing light (150). It is a basic idea of the present invention to incorporate a non- or low-reflective processing layer (120) on top of a light emitting structure (110) like a VCSEL array in order to enable on wafer processing of light emitting structures (130) like microlens arrays. The invention further describes a method of manufacturing such a light emitting device (100).
Abstract:
The invention relates to a lighting apparatus (1) comprising an array (2) of light sources (3) emitting emission cones (4) with edges (5) which intersect in an intersection plane and a lens unit (7) for homogenizing the intensity distribution in the far field. The array of the light sources and the lens unit are arranged such that i) the emission cones traverse the lens unit and ii) the distance (s) between the array of the light sources and the lens unit deviates from the sum of or the difference between a) the focal length f of the lens unit and b) the distance t between the intersection plane and the array (2) of the light sources (3) by 20 percent or less. This configuration leads to an intermixture of the emission cones in the far field such that the intensity distribution in the far field is substantially homogeneous.
Abstract:
The invention describes carrier structure (100, 200) for assembling a semiconductor lighting module, comprising at least two sub carriers (110, 210) and an alignment structure (120, 130, 230, 232) mechanically coupling the sub carriers (110, 210). The alignment structure (120, 130, 230, 232) is adapted such that the mechanical coupling to at least a part of the sub carriers (110, 210) disappears during thermal mating the carrier structure (100, 200) on a carrier (110, 250). The alignment structure (120, 130, 230, 232) is further adapted to compensate a coefficient of thermal expansion of a material of the carrier (110, 250) being higher than a coefficient of thermal expansion of a material of the carrier structure (100, 200). The invention further describes a semiconductor chip comprising such a carrier structure (100, 200) and a semiconductor lighting module comprising the carrier structure (100, 200) or the semiconductor chip. The invention finally describes a corresponding method of manufacturing a semiconductor lighting module. The invention enables assembling of semiconductor lighting modules by thermal mating with reduced alignment effort.
Abstract:
The invention relates to a lighting apparatus (2) for providing light for processing an object (3). A ring of light sources generates processing light for processing the object and an imaging unit (9) images the ring of light sources onto a working plane (16) in which the object is to be processed, wherein the ring of light sources and the imaging unit are configured such that images of the light sources in the working plane are distributed equidistantly in a direction being parallel to a diameter of the imaged ring in the working plane. The ring arrangement allows for a high quality imaging with a relatively small and technically simple optical element. A relatively small lighting apparatus can therefore be provided, which can be used for applications like laser printing.
Abstract:
The invention relates to a lighting apparatus (1) comprising an array (2) of light sources (3) emitting emission cones (4) with edges (5) which intersect in an intersection plane and a lens unit (7) for homogenizing the intensity distribution in the far field. The array of the light sources and the lens unit are arranged such that i) the emission cones traverse the lens unit and ii) the distance (s) between the array of the light sources and the lens unit deviates from the sum of or the difference between a) the focal length f of the lens unit and b) the distance t between the intersection plane and the array (2) of the light sources (3) by 20 percent or less. This configuration leads to an intermixture of the emission cones in the far field such that the intensity distribution in the far field is substantially homogeneous.
Abstract:
The invention describes a heating system (100) and a corresponding method of heating a heating surface (180) of an object (150, 950) to a processing temperature of at least 100° C., wherein the heating system (100) comprises semiconductor light sources (115), and wherein the heating system (100) is adapted to heat an area element of the heating surface (180) with at least 50 semiconductor light sources (115) at the same time. The heating system (100) may be part of a reactor for processing semiconductor structures. The light emitted by means of the semiconductor light sources (115) overlaps at the heating surface (180). Differences of the characteristic of one single semiconductor light source (115) may be blurred at the heating surface (180) such that a homogeneous temperature distribution across a processing surface of a, for example, wafer may be enabled.
Abstract:
The present invention relates to an optically pumped vertical external-cavity surface-emitting laser device comprising at least one VECSEL (200) and several pump laser diodes (300). The pump laser diodes (300) are arranged to optically pump the active region (108) of the VECSEL (200) by reflection of pump radiation (310) at a mirror element (400). The mirror element (400) is arranged on the optical axis (210) of the VECSEL (200) and is designed to concentrate the pump radiation (310) in the active region (108) and to form at the same time the external mirror of the VECSEL (200). The proposed device avoids time consuming adjustment of the pump lasers relative to the active region of the VECSEL and allows a very compact design of the laser device.
Abstract:
The invention relates to a lighting apparatus (10) for providing processing light for processing an object. Groups of light sources generate light for processing the object, wherein the groups of light sources are imaged onto a working plane (17) by an imaging unit (16) for producing the processing light. The resulting intensity distribution is configured such that, if the intensity distribution is integrated in a spatial integration direction, the resulting integrated intensity distribution has an intensity dip, wherein one or several of the groups of light sources are controllable independently from the other of the groups of light sources for modifying the integrated intensity distribution. This allows using the lighting apparatus in a processing apparatus such that perpendicular to a processing line, along which an object is to be processed, in particular, to be sealed, the object can be processed relatively homo genously, therey improving the quality of processing the object.