Abstract:
A film for a liquid packaging container, comprising at least one of a layer containing a resin composition (X) containing a polypropylene resin (a) and at least one of a hydrogenated block copolymer (b), the hydrogenated block copolymer (b) being a hydrogenated product of a block copolymer containing a polymer block (A) mainly containing an aromatic vinyl compound unit, and a polymer block (B) mainly containing an isoprene (Ip) unit, a butadiene (Bd) unit, or isoprene (Ip) and butadiene (Bd) units, in the resin composition (X), the hydrogenated block copolymer (b) having a phase separation structure having formed therein both (i) an island phase having a long axis of 1 μm or more, or a bicontinuous structure, and (ii) an island phase having a long axis of 300 nm or less, and in the resin composition (X), the mass ratio ((a)/((a)+(b))) of the polypropylene resin (a) and the hydrogenated block copolymer (b) being from 61/100 to 95/100.
Abstract:
Provided is a hydrogenated block copolymer, which is a hydrogenation product of a block copolymer including a polymer block (A) containing more than 70 mol % of a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing 30 mol % or more of a structural unit derived from at least one selected from the group consisting of a conjugated diene compound and isobutylene, the hydrogenated block copolymer being satisfied with the following requirements (1) and (2): Requirement (1): the content of the polymer block (A) in the block copolymer is 1 to 30% by mass; and Requirement (2): when the polymer block (B) is regarded as having a structure with a hydrogenation rate of 100 mol %, an average value of a methylene chain length of a main chain of the structural unit derived from at least one selected from the group consisting of a conjugated diene compound and isobutylene is 1.0 to 6.0.
Abstract:
Provided are a resin composition, a pellet, a veil, a vibration damping material, a sound insulator, and an intermediate film for laminated glass, each of which is much more excellent in damping properties. Specifically, the resin composition is a resin composition containing the following block copolymer or hydrogenation product thereof (X); and a tackifier resin (Y) having a glass transition temperature of −50 to 45° C., wherein when a glass transition temperature of a polymer block (B) of the block copolymer or hydrogenation product thereof (X) is designated as Tg(X), and a glass transition temperature of the tackifier resin (Y) is designated as Tg(Y), an absolute value of a difference between Tg(X) and Tg(Y) is 50° C. or lower, the block copolymer or hydrogenation product thereof (X) being a block copolymer or a hydrogenation product thereof having a polymer block (A) containing more than 70 mol % of a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing 30 mol % or more of a structural unit derived from at least one selected from the group consisting of a conjugated diene compound and isobutylene, and the content of the polymer block (A) in the block copolymer being 25% by mass or less.
Abstract:
Provided are a hydrogenated block copolymer capable of giving a resin composition having good moldability and sufficient mechanical strength and excellent in flexibility, kink resistance and transparency and also excellent in pressure sensitive adhesiveness, adhesiveness and weather resistance, and a resin composition containing the hydrogenated block copolymer, as well as a pressure sensitive adhesive, an adhesive, a molded article, a liquid-packaging container, a medical tool, a medical tube, a corner member for weather seal, and a weather seal that are produced using these. Specifically, the hydrogenated block copolymer is a hydrogenated block copolymer prepared by hydrogenating a block copolymer that contains at least a polymer block (A) consisting mainly of a structural unit derived from an aromatic vinyl compound, and a polymer block (B) consisting mainly of a structural unit derived from isoprene, a structural unit derived from butadiene, or a structural unit derived from a mixture of isoprene and butadiene, wherein the content of the polymer block (A) is 1% by mass or more and less than 5% by mass relative to the total amount of the hydrogenated block copolymer, the total content of the 1,2-bond and the 3,4-bond of the polymer block (B) is 30 to 85 mol %, the hydrogenation rate of the polymer block (B) is 80 mol % or more, and the weight average molecular weight of the hydrogenated block copolymer is 150,000 to 800,000.
Abstract:
A first object of the invention is to provide an interlayer film for laminated glass which has excellent sound insulating properties and heat shielding properties, and a laminated glass using the same. Further, a second object of the invention is to provide an interlayer film for laminated glass capable of maintaining the sound insulating properties, weather resistance, and heat creep resistance at a high level even if the thickness is reduced, and a laminated glass using the same.The invention relates to an interlayer film for laminated glass, including at least one layer A containing a thermoplastic elastomer, wherein a laminated glass in which the interlayer film for laminated glass is disposed between two clear glasses with the total thickness of the clear glasses being 4 mm or less has a visible light transmittance of 70% or more and an average transmittance of infrared light in the wavelength range of 800 to 1,100 nm of 72% or less.
Abstract:
Provided is a hydrogenated block copolymer, which is a hydrogenation product of a block copolymer including a polymer block (A) containing more than 70 mol % of a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing 30 mol % or more of a structural unit derived from at least one selected from the group consisting of a conjugated diene compound and isobutylene, the hydrogenated block copolymer being satisfied with the following requirements (1) and (2): Requirement (1): the content of the polymer block (A) in the block copolymer is 1 to 30% by mass; and Requirement (2): when the polymer block (B) is regarded as having a structure with a hydrogenation rate of 100 mol %, an average value of a methylene chain length of a main chain of the structural unit derived from at least one selected from the group consisting of a conjugated diene compound and isobutylene is 1.0 to 6.0.
Abstract:
Provided is a method in which a polyisobutylene having a peak top molecular weight (Mp) of 5,000 to 80,000 is easily supplied to a hydrogenated block copolymer to stably produce a thermoplastic polymer composition. Specifically, provided is a method for producing a thermoplastic polymer composition containing a hydrogenated block copolymer (a) and a polyisobutylene (b) having a peak top molecular weight (Mp) of 5,000 to 80,000 expressed in terms of standard polystyrene as determined by gel permeation chromatography, the method including a following first step and a following second step.First step: a step of supplying the polyisobutylene (b) to a twin-screw/single-screw extruder of a counter-rotating type, to plasticize the polyisobutylene (b).Second step: a step including a following step (i) and a following step (ii): (i) a step of supplying the hydrogenated block copolymer (a) to a twin-screw extruder; and (ii) a step of supplying the polyisobutylene (b) plasticized in the first step to the twin-screw extruder via a quantitative pump and kneading the polyisobutylene (b) together with the hydrogenated block copolymer (a) supplied in the step (i).
Abstract:
Provided is a thermoplastic polymer composition containing an aromatic vinyl-based block copolymer (a-1) having a number average molecular weight of 30,000 to 200,000, the aromatic vinyl-based block copolymer containing a polymer block F containing a structural unit derived from an aromatic vinyl-based monomer as a main component and a hydrogenated or non-hydrogenated polymer block G containing a structural unit derived from a conjugated diene monomer or an isobutylene monomer as a main component; an acrylic polymer (a-2); an olefin-based polymer containing polar groups (a-3); and a softening agent (a-4), at the proportions that satisfy the following Expressions (1) to (3): 0.05≦W(a-2)/W(a-1)≦9 (1) 0.1
Abstract:
A thermoplastic elastomer composition possessing a good combination of elastic recovery, tear strength at 25° C., stress relaxation and reduced (improved) anisotropy, which is based on a hydrogenated block copolymer (A), a thermoplastic resin (B), a rubber softener (C) and a polyolefin elastomer (D), of specified types and proportions, and which is suitable for use in a variety of film and sheet applications.
Abstract:
Described herein is a resin composition capable of giving a liquid-packaging container satisfying both high flexibility and low-temperature impact resistance, excellent in low-temperature heat seal strength an also excellent in bag-breakage strength; a heat sealing agent and a film for liquid-packaging container containing the resin composition; a liquid-packaging container formed of the film for liquid-packaging container; a liquid-packaging container and a liquid discharge member obtained using the resin composition; and a medical container having the liquid-packaging container.