摘要:
A semiconductor device includes an epitaxy layer formed on semiconductor substrate, a device layer formed on the epitaxy layer, a trench formed within the semiconductor substrate and including a dielectric layer forming a liner within the trench and a conductive core forming a through-silicon via conductor, and a deep trench isolation structure formed within the substrate and surrounding the through-silicon via conductor. A region of the epitaxy layer formed between the through-silicon via conductor and the deep trench isolation structure is electrically isolated from any signals applied to the semiconductor device, thereby decreasing parasitic capacitance.
摘要:
Methods for forming a buried-channel field-effect transistor include doping source and drain regions on a substrate with a dopant having a first type; forming a doped shielding layer on the substrate in a channel region having a second doping type opposite the first type to displace a conducting channel away from a gate-interface region; forming a gate dielectric over the doped shielding layer; and forming a gate on the gate dielectric.
摘要:
An electrical circuit, planar diode, and method of forming a diode and one or more CMOS devices on the same chip. The method includes electrically isolating a portion of a substrate in a diode region from other substrate regions. The method also includes recessing the substrate in the diode region. The method further includes epitaxially forming in the diode region a first doped layer above the substrate and epitaxially forming in the diode region a second doped layer above the first doped layer.
摘要:
A method for forming an electrical device that includes forming a high-k gate dielectric layer over a semiconductor substrate that is patterned to separate a first portion of the high-k gate dielectric layer that is present on a first conductivity device region from a second portion of the high-k gate dielectric layer that is present on a second conductivity device region. A connecting gate conductor is formed on the first portion and the second portion of the high-k gate dielectric layer. The connecting gate conductor extends from the first conductivity device region over the isolation region to the second conductivity device region. One of the first conductivity device region and the second conductivity device region may then be exposed to an oxygen containing atmosphere. Exposure with the oxygen containing atmosphere modifies a threshold voltage of the semiconductor device that is exposed.
摘要:
A buried-channel field-effect transistor includes a semiconductor layer formed on a substrate. The semiconductor layer includes doped source and drain regions and an undoped channel region. the transistor further includes a gate dielectric formed over the channel region and partially overlapping the source and drain regions; a gate formed over the gate dielectric; and a doped shielding layer between the gate dielectric and the semiconductor layer.
摘要:
A transistor includes a semiconductor layer, and a gate dielectric is formed on the semiconductor layer. A gate conductor is formed on the gate dielectric and an active area is located in the semiconductor layer underneath the gate dielectric. The active area includes a graded dopant region that has a higher doping concentration near a top surface of the semiconductor layer and a lower doping concentration near a bottom surface of the semiconductor layer. This graded dopant region has a gradual decrease in the doping concentration. The transistor also includes source and drain regions that are adjacent to the active region. The source and drain regions and the active area have the same conductivity type.
摘要:
An electrical circuit, planar diode, and method of forming a diode and one or more CMOS devices on the same chip. The method includes electrically isolating a portion of a substrate in a diode region from other substrate regions. The method also includes recessing the substrate in the diode region. The method further includes epitaxially forming in the diode region a first doped layer above the substrate and epitaxially forming in the diode region a second doped layer above the first doped layer.
摘要:
A field effect transistor structure that uses thin semiconductor on insulator channel to control the electrostatic integrity of the device. Embedded stressors are epitaxially grown in the source/drain area from a template in the silicon substrate through an opening made in the buried oxide in the source/drain region. In addition, a dielectric layer is formed between the embedded stressor and the semiconductor region under the buried oxide layer, which is located directly beneath the channel to suppress junction capacitance and leakage.
摘要:
In one exemplary embodiment of the invention, a method includes: providing an inversion mode varactor having a substrate, a backgate layer overlying the substrate, an insulating layer overlying the backgate layer, a semiconductor layer overlying the insulating layer and at least one metal-oxide semiconductor field effect transistor (MOSFET) device disposed upon the semiconductor layer, where the semiconductor layer includes a source region and a drain region, where the at least one MOSFET device includes a gate stack defining a channel between the source region and the drain region, where the gate stack has a gate dielectric layer overlying the semiconductor layer and a conductive layer overlying the gate dielectric layer; and applying a bias voltage to the backgate layer to form an inversion region in the semiconductor layer at an interface between the semiconductor layer and the insulating layer.
摘要:
A structure has at least one field effect transistor having a gate stack disposed between raised source drain structures that are adjacent to the gate stack. The gate stack and raised source drain structures are disposed on a surface of a semiconductor material. The structure further includes a layer of field dielectric overlying the gate stack and raised source drain structures and first contact metal and second contact metal extending through the layer of field dielectric. The first contact metal terminates in a first trench formed through a top surface of a first raised source drain structure, and the second contact metal terminates in a second trench formed through a top surface of a second raised source drain structure. Each trench has silicide formed on sidewalls and a bottom surface of at least a portion of the trench. Methods to fabricate the structure are also disclosed.