摘要:
In a method of fabricating a semiconductor device having a MISFET and/or bipolar transistor and/or a resistor formed with different surface portions of a single silicon semiconductor substrate in which a silicide layer is formed on each of source/drain regions of the MISFET and/or collector contact region and extrinsic base region of the bipolar transistor and/or contact regions of the resistor, the bipolar transistor has its emitter region formed by diffusing an impurity contained in doped polysilicon film serving as an emitter electrode of the bipolar transistor into a part of its base region. The resistor may have a resistive region formed in a surface portion of the substrate and may be covered with an insulating film and a doped polysilicon film thereon or may have a doped polysilicon film formed over a surface portion of the substrate as a resistor element. These doped polysilicon films in the resistor are films which are formed in the same step as that for the doped silicon film serving as the emitter electrode in the bipolar transistor. Each of the doped polysilicon film in the bipolar transistor and that in the resistor are covered with an insulating film before a refractory metal film is formed over a whole surface of the substrate to prevent formation of silicide films on the doped polysilicon films in the bipolar transistor and resistor.
摘要:
A semiconductor device includes a plurality of semiconductor regions of a first conductive type and a plurality of semiconductor regions of a second conductive type. AMOS transistor having a channel of the second conductive type is formed in the semiconductor regions of the first conductive type, and a bipolar transistor and a MOS transistor having a channel of the first conductive type are formed in the semiconductor regions of the second conductive type. Each of the semiconductor regions of the first conductive type is made up of a semiconductor layer where the impurity concentration decreases with the depth from the surface thereof, a first buried layer of the first conductive type which is formed in a semiconductor substrate and where the impurity concentration distribution in the direction of thickness has a single peak value, and a second buried layer of the first conductive type which is formed between the semiconductor layer and the first buried layer and where the impurity concentration distribution in the direction of thickness has a single peak value. The first and second buried layers are formed by the ion implantation method, after an epitaxial growth process and a field oxidation process have been completed.
摘要:
A semicondcutor device and a manufacturing method thereof are disclosed in which higher integration can be achieved without increasing the total manufacturing steps. The semiconductor device includes at least two MOS transistors having the same channel types, the gate electrodes of which are constructed of polycrystal silicon layers which contain an impurity, and a bipolar transistor, the base electrode of which is constructed of a polycrystal silicon layer which contains and impurity. In particular, the respective gate electrodes of the two MOS transistors contain impurities of different conductivity types from one another.
摘要:
The gate electrodes of the driver MISFETs, transfer MISFETs and load MISFETS of the static random access memory (SRAM) are formed of the first-level conductive layer deposited over the main surface of the semiconductor substrate. The gate electrodes, power source voltage line, reference voltage line, local interconnection lines, and complementary data lines, all making up the conductive layers of the SRAM memory cell, are formed of different conductive layers, i.e. conductive layers of different levels. The local interconnection lines and the reference voltage line or power source voltage line are arranged, with respect to a plan view of the main surface of the substrate, to cross each other and a capacitance is formed in the intersecting regions.
摘要:
A novel gate circuit is disclosed. A first semiconductor switch includes a couple of main terminals connected between a first potential level and an output node, in which a high impedance state is held in response to an input signal having a first logic level and a second logic level, and the impedance state changes from high to low only during a transient period when the input signal changes substantially from the first to second logic level. A second semiconductor switch includes a couple of main terminals inserted between a second potential level different from the first potential level and the output node, in which a high impedance state is held in response to the input signal, and the impedance state changes from high to low only during a transient period when the input signal changes from the second to first logic level.
摘要:
In a high breakdown voltage semiconductor element among elements integrated together on an SOI substrate in which its rated voltage is shared between an embedded oxide layer and a drain region formed by an element active layer, both high integration and high breakdown voltage are realized while also securing suitability for practical implementation and practical use. The high breakdown voltage is realized without hampering size reduction of the element by forming an electrically floating layer of a conductivity type opposite to that of the drain region at the surface of the drain region. Further, the thickness of the embedded oxide layer is reduced to a level suitable for the practical implementation and practical use by setting the thickness of the element active layer of the SOI substrate at 30 μm or more.
摘要:
For achieving an audio reproduction with high sound quality, in a multi-channel A/V amplifier, front speakers are driven with a parallel-drive bi-amplifier arrangement upon stereo reproduction. In the case of the multi-channel reproduction mode, the switching circuit allows an output signal of each channel of the decoder to be sent to speakers via amplifiers for each channel in one-to-one correspondence. On the other hand, in the case of the 2-channel stereo reproduction mode, the switching circuit allows at least two amplifiers among the plurality of amplifiers to be connected in parallel between the output signal for each of the channels L and R of the decoder and the speakers for each of the channels L and R, and also allows the timing of the output signals of the respective amplifiers to be varied.
摘要:
A manufacturing method of a silicon carbide semiconductor device includes the steps of: preparing a semiconductor substrate including a silicon carbide substrate, a drift layer and a first semiconductor layer; forming a plurality of first trenches in a cell portion; forming a gate layer on an inner wall of each first trench by an epitaxial growth method; forming a first insulation film on the surface of the semiconductor substrate; forming a gate electrode on the first insulation film for connecting to the gate layer electrically; forming a source electrode on the first insulation film for connecting to the first semiconductor layer in the cell portion; and forming a drain electrode connected to the silicon carbide substrate electrically.
摘要:
A SiC semiconductor device includes: a SiC substrate having a drain layer, a drift layer and a source layer stacked in this order; multiple trenches penetrating the source layer and reaching the drift layer; a gate layer on a sidewall of each trench; an insulation film on the sidewall of each trench covering the gate layer; a source electrode on the source layer; and a diode portion in or under the trench contacting the drift layer to provide a diode. The drift layer between the gate layer on the sidewalls of adjacent two trenches provides a channel region. The diode portion is coupled with the source electrode, and insulated from the gate layer with the insulation film.
摘要:
A silicon carbide semiconductor device such as JFET, SIT and the like is provided for accomplishing a reduction in on-resistance and high-speed switching operations. In the JFET or SIT which turns on/off a current with a depletion layer extending in a channel between a gate region formed along trench grooves, a gate contact layer and a gate electrode, which can be supplied with voltages from the outside, are formed on one surface of a semiconductor substrate or on the bottom of the trench groove. A metal conductor (virtual gate electrode) is formed in ohmic contact with a p++ contact layer of the gate region on the bottom of the trench grooves independently of the gate electrode. The virtual gate electrode is electrically isolated from the gate electrode and an external wire.