摘要:
In various embodiments, two wireless communication devices may communicate with each other using multiple protocols, by dividing the data to be communicated into multiple portions, and using each protocol to communicate different portions. The different protocols may be used simultaneously or concurrently. This multi-protocol technique may be used in several different ways to provide different types of advantages in wireless communications.
摘要:
Briefly, in accordance with one or more embodiments, a mechanism disclosed herein groups transmissions to machine-to-machine (M2M) devices in the downlink which can significantly reduce the overhead of transmission. One or more bursts to be transmitted in the downlink to one or more respective devices are aggregated and concatenated into a concatenated burst comprising one or more sub-bursts corresponding to the one or more bursts. The concatenated burst is encoded as a single payload to be transmitted, and the payload is transmitted to the one or more devices such that the devices are capable of decoding their respective sub-bursts in the concatenated burst.
摘要:
In various embodiments, two wireless communication devices may communicate with each other using multiple protocols, by dividing the data to be communicated into multiple portions, and using each protocol to communicate different portions. The different protocols may be used simultaneously or concurrently. This multi-protocol technique may be used in several different ways to provide different types of advantages in wireless communications.
摘要:
A method for a wireless communication network is presented. In one embodiment, the method includes receiving, by a base station, information about one or more interfering base stations with respect to a communication channel used by a mobile station. The method includes sending silence requests to an interfering base station to reduce interference from that interfering base station with respect to the communication channel. The method further includes establishing communication with the mobile station via the communication channel.
摘要:
Briefly, in accordance with one or more embodiments, a mechanism disclosed herein groups transmissions to machine-to-machine (M2M) devices in the downlink which can significantly reduce the overhead of transmission. One or more bursts to be transmitted in the downlink to one or more respective devices are aggregated and concatenated into a concatenated burst comprising one or more sub-bursts corresponding to the one or more bursts. The concatenated burst is encoded as a single payload to be transmitted, and the payload is transmitted to the one or more devices such that the devices are capable of decoding their respective sub-bursts in the concatenated burst.
摘要:
A method and apparatus to manage interference in a multi-cellular network is disclosed. This approach uses downlink power control to allow a serving femto access point of a plurality of femto access points to transmit signals at a first power level to ensure a quality of service level of a service provided to a first plurality of mobile stations served by the plurality of femto access points. This approach also uses the downlink power control to adjust a power level of the signals transmitted by a serving femto access point of the plurality of the femto access points to manage interference caused by the serving femto access point on a second plurality of mobile stations served by one or more macro base stations.
摘要:
An apparatus and method to centrally establish and control intra-cell device-to-device connections on licensed bands of a wireless communications network are disclosed herein. An eNodeB receives a request from a first device to communicate with a second device or a request from the first device for content or service. The eNodeB schedules a device discovery between the first device and at least a candidate device. The eNodeB determines establishing the device-to-device connection between the first device and the candidate device based on a discovery report generated by one of the first or candidate device. The discovery report comprises information about signal quality of transmission from the other one of the first or candidate device that is received by the one of the first or candidate device during the scheduled device discovery.
摘要:
Embodiments of computer-implemented methods, systems, computing devices, and computer-readable media are described herein for opportunistically transitioning service flows of mobile devices between being direct and indirect. In various embodiments, a proximity between first and second mobile devices that are in wireless communication with each other may be monitored. In various embodiments, a selective transition of a service flow between the first and second mobile devices from being indirect through the radio network access node using a first radio access technology (“RAT”) to being direct using a second RAT may be facilitated, e.g., responsive to a determination that a first criterion has been met. In various embodiments, a selective transition of the service flow from being direct using the second RAT to being indirect using the first RAT may be facilitated, e.g., responsive to a determination that a second criterion has been met.
摘要:
A method for a wireless communication network is presented. In one embodiment, the method includes receiving, by a base station, information about one or more interfering base stations with respect to a communication channel used by a mobile station. The method includes sending silence requests to an interfering base station to reduce interference from that interfering base station with respect to the communication channel. The method further includes establishing communication with the mobile station via the communication channel.
摘要:
Embodiments of a base station and method for reducing asynchronous interference in a multi-tier OFDMA overlay network are generally described herein. In some embodiments, a lower-tier base station is configured to adjust OFDMA frame boundaries to cause frames communicated by a higher-tier to arrive within a cyclic prefix at the lower-tier base station. The lower-tier base station may also be configured to adjust OFDMA frame boundaries to cause frames communicated by a lower-tier of the network to arrive within a cyclic prefix at a higher-tier mobile station. Accordingly, frames from one tier may arrive within the cyclic prefix of another thereby reducing asynchronous interference.