摘要:
The present invention provides multi-well plates and column arrays in which samples (e.g., cell lysates containing nucleic acids of interest, such as RNA) can be analyzed and/or processed. In one embodiment, the microfiltration arrangement is a multilayer structure, including (i) a column plate having an array of minicolumns into which samples can be placed, (ii) a discrete filter element disposed in each minicolumn, (iii) a drip-director plate having a corresponding array of drip directors through which filtrate may egress, and (iv) a receiving-well plate having a corresponding array of receiving wells into which filtrate can flow. The invention provides multi-well microfiltration arrangements that are relatively simple to manufacture and that overcome many of the problems associated with the prior arrangements relating to (i) cross-contamination due to wicking across a common filter sheet or (ii) individual filter elements entrapping sample constituents within substantial dead volumes. Further, the invention provides multi-well microfiltration arrangements that adequately support discrete filter elements disposed in the wells without creating substantial preferential flow. Additionally, the invention provides multi-well microfiltration arrangements that avoid cross-contamination due to aerosol formation, pendent drops and/or splattering. Other disclosed features of the invention provide for the automated covering or heat-sealing of filtrate samples separately collected in an array of wells.
摘要:
The present invention provides multi-well plates and column arrays in which samples (e.g., cell lysates containing nucleic acids of interest, such as RNA) can be analyzed and/or processed. In one embodiment, the microfiltration arrangement is a multilayer structure, including (i) a column plate having an array of minicolumns into which samples can be placed, (ii) a discrete filter element disposed in each minicolumn, (iii) a drip-director plate having a corresponding array of drip directors through which filtrate may egress, and (iv) a receiving-well plate having a corresponding array of receiving wells into which filtrate can flow. The invention provides multi-well microfiltration arrangements that are relatively simple to manufacture and that overcome many of the problems associated with is the prior arrangements relating to (i) cross-contamination due to wicking across a common filter sheet or (ii) individual filter elements entrapping sample constituents within substantial dead volumes. Further, the invention provides multi-well microfiltration arrangements that adequately support discrete filter elements disposed in the wells without creating substantial preferential flow. Additionally, the invention provides multi-well microfiltration arrangements that avoid cross-contamination due to aerosol formation, pendent drops and/or splattering. Other disclosed features of the invention provide for the automated covering or heat-sealing of filtrate samples separately collected in an array of wells.
摘要:
The present invention provides multi-well plates and column arrays in which samples (e.g., cell lysates containing nucleic acids of interest, such as RNA) can be analyzed and/or processed. In one embodiment, the microfiltration arrangement is a multilayer structure, including (i) a column plate having an array of minicolumns into which samples can be placed, (ii) a discrete filter element disposed in each minicolumn, (iii) a drip-director plate having a corresponding array of drip directors through which filtrate may egress, and (iv) a receiving-well plate having a corresponding array of receiving wells into which filtrate can flow. The invention provides multi-well microfiltration arrangements that are relatively simple to manufacture and that overcome many of the problems associated with the prior arrangements relating to (i) cross-contamination due to wicking across a common filter sheet or (ii) individual filter elements entrapping sample constituents within substantial dead volumes. Further, the invention provides multi-well microfiltration arrangements that adequately support discrete filter elements disposed in the wells without creating substantial preferential flow. Additionally, the invention provides multi-well microfiltration arrangements that avoid cross-contamination due to aerosol formation, pendent drops and/or splattering. Other disclosed features of the invention provide for the automated covering or heat-sealing of filtrate samples separately collected in an array of wells.
摘要:
The present invention provides multi-well plates and column arrays in which samples (e.g., cell lysates containing nucleic acids of interest, such as RNA) can be analyzed and/or processed. In one embodiment, the microfiltration arrangement is a multilayer structure, including (i) a column plate having an array of minicolumns into which samples can be placed, (ii) a discrete filter element disposed in each minicolumn, (iii) a drip-director plate having a corresponding array of drip directors through which filtrate may egress, and (iv) a receiving-well plate having a corresponding array of receiving wells into which filtrate can flow. The invention provides multi-well microfiltration arrangements that are relatively simple to manufacture and that overcome many of the problems associated with the prior arrangements relating to (i) cross-contamination due to wicking across a common filter sheet or (ii) individual filter elements entrapping sample constituents within substantial dead volumes. Further, the invention provides multi-well microfiltration arrangements that adequately support discrete filter elements disposed in the wells without creating substantial preferential flow. Additionally, the invention provides multi-well microfiltration arrangements that avoid cross-contamination due to aerosol formation, pendent drops and/or splattering. Other disclosed features of the invention provide for the automated covering or heat-sealing of filtrate samples separately collected in an array of wells.
摘要:
The present invention provides multi-well plates and column arrays in which samples (e.g., cell lysates containing nucleic acids of interest, such as RNA) can be analyzed and/or processed. In one embodiment, the microfiltration arrangement is a multilayer structure, including (i) a column plate having an array of minicolumns into which samples can be placed, (ii) a discrete filter element disposed in each minicolumn, (iii) a drip-director plate having a corresponding array of drip directors through which filtrate may egress, and (iv) a receiving-well plate having a corresponding array of receiving wells into which filtrate can flow. The invention provides multi-well microfiltration arrangements that are relatively simple to manufacture and that overcome many of the problems associated with the prior arrangements relating to (i) cross-contamination due to wicking across a common filter sheet or (ii) individual filter elements entrapping sample constituents within substantial dead volumes. Further, the invention provides multi-well microfiltration arrangements that adequately support discrete filter elements disposed in the wells without creating substantial preferential flow. Additionally, the invention provides multi-well microfiltration arrangements that avoid cross-contamination due to aerosol formation, pendent drops and/or splattering. Other disclosed features of the invention provide for the automated covering or heat-sealing of filtrate samples separately collected in an array of wells.
摘要:
Exemplary embodiments provide microfludic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.
摘要:
Microfluidic devices having a diffusion-aided system for loading samples into the microfluidic device are provided. Methods of gas-venting a microfluidic device through a non-porous, gas permeable material sealing cover layer, for example, during liquid sample loading, are also provided. The non-porous, gas-permeable material can be, for example, a polysiloxane, for example, polydimethylsiloxane.
摘要:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
摘要:
Systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
摘要:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.