摘要:
An ink-jet printing apparatus which is capable of maintaining a predetermined clearance between a printing surface of a printing object and an ink-jet head, includes a printing object mounting portion, on which the printing object is mounted, an ink-jet unit provided so as to be capable of relative movement in an opposing direction with respect to the printing object mounting portion, and mounting an ink-jet head which can oppose the printing surface of the printing object, shifting means for shifting the ink-jet unit mounting portion relative to the printing object mounting portion in the opposing direction, and a clearance adjusting sensor provided at the side of the ink-jet unit mounting portion so as to be capable of contacting the printing surface of the printing object. The shifting means is driven in a direction where the clearance adjusting sensor is caused to to contact the printing surface of the printing object, the shifting means then is driven in the opposite direction when the clearance adjusting sensor comes into contact with the printing surface of the printing object, and relatively shifting the ink-jet unit mounting portion is shifted relative to the printing object mounting portion in a direction where the clearance adjusting sensor moves away from the printing surface of the printing object by a predetermined magnitude.
摘要:
A wiring substrate includes a ceramic substrate including plural ceramic layers, an inner wiring, and an electrode electrically connected to the inner wiring, the electrode exposed on a first surface of the ceramic substrate, and a silicon substrate body having a front surface and a back surface situated on an opposite side of the front surface and including a wiring pattern formed on the front surface and a via filling material having one end electrically connected to the wiring pattern and another end exposed at the back surface. The back surface is bonded to the first surface of the ceramic substrate via a polymer layer. The via filling material penetrates through the polymer layer and is directly bonded to the electrode.
摘要:
A wiring board with an electronic device comprising a plurality of trenches arranged in parallel on a substrate, a common trench communicating the plurality of trenches with each other at one of their ends on the substrate, a metal layer formed at the bottom of the plurality of trenches, and an electrode layer connected with the metal layer and formed on a bottom of the common trench, wherein the electrode layer on the bottom of the common trench constitutes a source electrode or a drain electrode of a field effect transistor, whereby the wiring board and an electronic circuit having a good fine wire pattern and a good narrow gap between the patterns using a coating material can be formed, and a reduction for a cost of an organic thin film electronic device and the electronic circuit can be attained since they can be realized through a development of a printing technique.
摘要:
A semiconductor device includes a chip, a laminated wiring structure formed integrally with the chip, a frame disposed to surround the chip and made of a material having stiffness, and a sealing resin formed to bury therein the frame and at least the periphery of the side surface of the chip. The laminated wiring structure includes a required number of wiring layers, which are formed by patterning in such a manner that a wiring pattern directly routed from an electrode terminal of the chip is electrically connected to pad portions for bonding external connection terminals, the pad portions being provided, at a position directly below a mounting area of the chip and at a position directly below an area outside the mounting area, on a surface to which the external connection terminals are bonded.
摘要:
When a thin film transistor is manufactured by using a printing method, the precision of alignment between a first electrode and a second electrode becomes a problem. If it is manufactured by using photolithography, a photomask for each layer is necessary, resulting in the cost being increased. The essence of the present invention is that not only processing the gate shape is carried out over the substrate by using a resist pattern formed by exposing using a photo-mask for the gate pattern but also processing the source-drain electrodes is carried out by lifting-off. As a result, alignment between the source-drain electrode and the gate electrode is carried out.
摘要:
A thin-film transistor includes an insulating substrate, a source electrode, and a drain electrode, disposed over the top of the insulating substrate, a semiconductor layer electrically continuous with the source electrode, and the drain electrode, respectively, a gate dielectric film formed over the top of at least the semiconductor layer; and a gate electrode disposed over the top of the gate dielectric film so as to overlap the semiconductor layer. Further, a first bank insulator is formed so as to overlie the source electrode, a second bank insulator is formed so as to overlie the drain electrode, and the semiconductor layer, the gate dielectric film, and the gate electrode are embedded in a region between the first bank insulator, and the second bank insulator.
摘要:
A method of manufacturing a semiconductor device having an organic semiconductor film comprises a step of preparing a transparent substrate at least having an opaque gate electrode and a gate insulator thereover, a step of forming a layer containing metal-nano-particles as a conductive layer for a source electrode and a drain electrode to the thus prepared transparent substrate, a step of applying exposure to the transparent substrate on the side of a surface not mounted with the opaque gate electrode, a step of flushing away a portion other than the source electrode and the drain electrode in the layer containing the metal-nano-particles after the exposure, and a step of forming an organic semiconductor layer forming a channel portion. Lower and upper electrodes are positioned in self-alignment manner and thus no positional displacement occurs even if a printing method is used. Accordingly, semiconductor devices such as flexible substrates using an organic semiconductor can be manufactured inexpensively by using a printing method.
摘要:
In order to establish processing techniques capable of making multi-tip probes with sub-micron intervals and provide such microscopic multi-tip probes, there is provided an outermost surface analysis apparatus for semiconductor devices etc. provided with a function for enabling positioning to be performed in such a manner that there is no influence on measurement in electrical measurements, at an extremely small region using this microscopic multi-tip probe, and there are provided the steps of making a cantilever 1 formed with a plurality of electrodes 3 using lithographic techniques, and forming microscopic electrodes 6 minute in pitch by sputtering or gas-assisted etching a distal end of the cantilever 1 using a focused charged particle beam or using CVD.
摘要:
A method of manufacturing a semiconductor device having an organic semiconductor film comprises a step of preparing a transparent substrate at least having an opaque gate electrode and a gate insulator thereover, a step of forming a layer containing metal-nano-particles as a conductive layer for a source electrode and a drain electrode to the thus prepared transparent substrate, a step of applying exposure to the transparent substrate on the side of a surface not mounted with the opaque gate electrode, a step of flushing away a portion other than the source electrode and the drain electrode in the layer containing the metal-nano-particles after the exposure, and a step of forming an organic semiconductor layer forming a channel portion. Lower and upper electrodes are positioned in self-alignment manner and thus no positional displacement occurs even if a printing method is used. Accordingly, semiconductor devices such as flexible substrates using an organic semiconductor can be manufactured inexpensively by using a printing method.
摘要:
In conventional techniques, there has been a problem such that a pattern failure tends to occur in which electrode patterns formed by coating do not coincide with lyophilic patterns and the coating process is complicated to degrade the productivity. The present invention provides a thin film transistor substrate including: a substrate; a plurality of gate electrodes formed on a flat surface of the substrate so as to form an array constituted with ring-shaped flat patterns formed by continuously connecting the outer peripheries of a plurality of ellipses aligned along the major axis direction, or patterns each formed with the peripheral shape of an ellipse; a gate insulating film formed over the gate electrodes; and source electrodes and drain electrodes formed on the gate insulating film exclusive of the flat surface regions, on the gate insulating film, defined as the projected shapes of the gate electrodes.