摘要:
To provide a variable resistance element capable of preventing the interface resistance, in a side of the variable resistance element in which resistance change is not allowed, from changing to high resistance due to applied voltage. The variable resistance element is configured by providing a variable resistance film (265) between a first electrode (280) and a second electrode (250), the oxygen concentration within the film of the variable resistance film (265) is high at the side of an interface with the second electrode (250) (high-concentration variable resistance layer (260)) and low at the side of an interface with the first electrode (280) (low-concentration variable resistance layer (270)), and the junction surface area between the low-concentration variable resistance layer (270) and the first electrode (280) is larger than the interface surface area between the high-concentration variable resistance layer (260) and the second electrode (250).
摘要:
A variable resistance element capable of increasing stability of a resistance changing operation and reducing a current necessary for changing, to a low resistance state for the first time, the variable resistance element in an initial state immediately after manufacture. The variable resistance element includes: a first electrode (101); a memory cell hole (150) formed above the first electrode (101); a first variable resistance layer (201) covering a bottom of the memory cell hole (150) and an upper surface of the first electrode (101); a second variable resistance layer (202) formed on the first variable resistance layer (201); and a second electrode (102) formed on the memory cell hole (150), in which a thickness of the first variable resistance layer (201) at the bottom of the memory cell hole (150) gradually decreases toward an edge area of the memory cell hole (150) and has a local minimum value around the edge area of the memory cell hole (150). Furthermore, an oxygen concentration in the first variable resistance layer (201) is higher than an oxygen concentration in the second variable resistance layer (202).
摘要:
A nonvolatile memory element comprises a resistance variable element 105 configured to reversibly change between a low-resistance state and a high-resistance state in response to electric signals with different polarities which are applied thereto; and a current controlling element 112 configured such that when a current flowing when a voltage whose absolute value is a first value as a desired value which is larger than 0 and smaller than a predetermined voltage value and whose polarity is a first polarity is applied is a first current and a current flowing when a voltage whose absolute value is the first value and whose polarity is a second polarity different from the first polarity is applied is a second current, the first current is higher than the second current, and the resistance variable element is connected in series with the current controlling element such that a polarity of a voltage applied to the current controlling element when the resistance variable element is changed from the low-resistance state to the high-resistance state is the first polarity.
摘要:
A technology for eliminating the defects in a tunnel insulation film of magnetic tunnel junction and for suppressing generation of a defective bit in an MRAM using magnetic tunnel junction in a memory. The magnetic memory includes a substrate, an interlayer insulation film covering the upper surface side of the substrate, memory cells, and plugs penetrating the interlayer insulation film. The memory cell includes a first magnetic layer formed on the upper surface side of the interlayer insulation film, a tunnel insulation layer formed on the first magnetic layer, and a second magnetic layer formed on the tunnel insulation layer. The plug is connected electrically with the first magnetic layer. The tunnel current passing part of the tunnel insulation layer located between the first and second magnetic layers is arranged, at least partially, so as not to overlap the plug in the direction perpendicular to the surface of the substrate.
摘要:
A method of manufacturing a nonvolatile memory device that is a variable resistance nonvolatile memory device, which has good consistency with a dual damascene process that is suitable for the formation of fine copper lines and which enables large capacity and high integration. This method includes: forming a variable resistance element, a contact hole and a line groove; and forming a current steering layer of a bidirectional diode element above interlayer insulating layers and a variable resistance layer to cover the line groove without covering a bottom surface of the contact hole.
摘要:
A nonvolatile semiconductor memory device includes: word lines; bit lines formed so as to three-dimensionally cross the word lines; and a cross-point cell array including cells each provided at a corresponding one of three-dimensional cross-points of the word lines and the bit lines. The cells include: a memory cell including a memory element that operates as a memory by reversibly changing in resistance value between at least two states based on an electrical signal; and an offset detection cell having a constant resistance value that is higher than the resistance value of the memory element in a high resistance state which is a state of the memory element when operating as the memory.
摘要:
A variable resistance nonvolatile memory element (10) is formed from a first electrode (101) comprising a material including a metal as a main component, a variable resistance layer (102) having a reversibly changing resistance value in response to applied predetermined electric pulses having different polarities, a semiconductor layer (103) comprising a material including a nitrogen-deficient silicon nitride as a main component, and a second electrode (104). The variable resistance layer (102) includes a first variable resistance layer (102a) adjacent to the first electrode (101) and a second variable resistance layer (102b), both comprising a material including an oxygen-deficient transition metal oxide as a main component. The first variable resistance layer (102a) has a higher oxygen content atomic percentage than the second variable resistance layer (102b). A stacked structure of the variable resistance layer (102), the semiconductor layer (103), and the second electrode (104) functions as a bidirectional diode element (106).
摘要:
To provide a variable resistance element capable of preventing the interface resistance, in a side of the variable resistance element in which resistance change is not allowed, from changing to high resistance due to applied voltage. The variable resistance element is configured by providing a variable resistance film (265) between a first electrode (280) and a second electrode (250), the oxygen concentration within the film of the variable resistance film (265) is high at the side of an interface with the second electrode (250) (high-concentration variable resistance layer (260)) and low at the side of an interface with the first electrode (280) (low-concentration variable resistance layer (270)), and the junction surface area between the low-concentration variable resistance layer (270) and the first electrode (280) is larger than the interface surface area between the high-concentration variable resistance layer (260) and the second electrode (250).
摘要:
A silver and silver alloy plating bath, includes (A) a soluble salt, having a silver salt or a mixture of a silver salt and a salt of a metal such as tin, bismuth, indium, lead, and the like; and (B) a particular aliphatic sulfide compound, such as thiobis(diethyleneglycol), dithiobis(triglycerol), 3,3′-thiodipropanol, thiodiglycerin, 3,6-dithiooctane-1,8-diol, and the like, which contain at least one or more of an ether oxygen atom, a 1-hydroxypropyl group, a hydroxypropylene group, or two or more of a sulfide bond in the molecule, and not containing a basic nitrogen atom. Compared to baths containing aliphatic monosulfide compounds, such as thiodiglycol or beta-thiodiglycol, which do not contain an ether oxygen atom, 1-hydroxypropyl group, a hydroxypropylene group, or two or more of a sulfide bond in the molecule, by having these particular compounds, the plating bath of the present invention has excellent stability over extended time, excellent co-deposition of silver and various metals, and excellent appearance of the electrodeposition coating.
摘要:
A communications network system capable of reducing the time from the occurrence of a trouble to the rebuilding of the system and a rebuilding method thereof. In a communications network system which comprises a plurality of node devices (10-1 to 10-4) distributed at a plurality of positions and transmission lines (1a, 1b) for connecting the plurality of node devices, one of the plurality of node devices is set as a master station (10-1) to operate the system, when the master station has a trouble, the individual node device makes an inquiry to the other node devices, and a node device which has confirmed that no other node device has a higher priority than itself becomes a substitute master station to take the place of the troubled master station to continue the operation of the system.