摘要:
A method of manufacturing a semiconductor device wherein an insulating film of silicon dioxide is provided on the sidewalls of a gate electrode. This silicon dioxide film is used to define the length of the gate region during formation of the source and drain regions by ion implantation, and to accurately position the gate electrode relative to the source and drain regions.
摘要:
A method for manufacturing a semiconductor device with a Schottky electrode includes the steps of subjecting the surface of a GaAs substrate to a sputtering etching process in a sputtering processing chamber of a sputtering device; and depositing Schottky electrode material by sputtering on the surface of the substrate to form a Schottky electrode in the processing chamber without exposing the substrate to the atmosphere.
摘要:
A Schottky gate electrode structure of a GaAs field effect semiconductor device comprises a Ti film having a thickness of 2 nm to 25 nm and provided adherently on a GaAs substrate including source and drain regions, and a refractory electrode film provided on the Ti film and formed of a material selected from W, Mo, Cr, Ta, Nb, V, Hf, Zr, nitrides of these metals, silicides of these metals, carbides of these metals, Ti-W alloys, WSixNy, TiNx, and TiSix. Adhesion of the refractory electrode film to the GaAs substrate is increased, and heat resisting properties of Schottky characteristics are improved according to the thin Ti film.
摘要:
A compound semiconductor device such as HEMTs (High Electron Mobility Transistors), metal semiconductor field effect transistors, and the like includes a compound semiconductor substrate having an active region, an insulating film provided over the semiconductor substrate, source and drain electrodes provided on the active region, and a gate electrode located between the source and drain electrodes. In the structure, the gate electrode has a lower electrode portion for providing a Schottky barrier contact with the active region through an opening of the insulating film, and an upper electrode portion provided on the insulating film to extend toward only the drain electrode.
摘要:
There is disclosed a power transistor comprising a semiconductor substrate having a PN junction exposed on a major surface of the semiconductor substrate, and a semiinsulative polysilicon film formed on the major surface, the polysilicon film covering the PN junction, the polysilicon film containing at least one of carbon, oxygen, and nitrogen, and the polysilicon film having a thickness of about 3000 .ANG..
摘要:
A first insulative film is formed with predetermined height and thickness in a loop shape on the surface of the Schottky-junction semiconductor substrate. A gate electrode metal film is formed with a predetermined height and thickness in a loop shape on the surface of the substrate along the inner surface of the first insulative film. A second insulative film is formed with a predetermined height and thickness in a loop shape on the surface of the substrate along the inner surface of the metal film. A channel consisting of a low concentration impurity layer, is formed in a loop shape inside the substrate directly under the metal film and the first and second insulative films. The source region consists of a high-concentration impurity layer formed such that it surrounds the channel positioned inside the substrate on the outside of the first insulative film. The drain region consists of a high-concentration impurity layer, which is formed such that it is surrounded by the channel positioned inside the substrate on the inside of the second insulative film.
摘要:
A method of manufacturing a GaAs FET is disclosed. In this manufacturing method, a protection film is formed on a GaAs substrate and a dummy gate electrode is formed thereon. A channel length setting film is isotropically formed on the dummy gate electrode to have a constant thickness. Then, an impurity is ion-implanted in the channel length setting film. Thereafter, the channel length setting film is removed. An etching preventive film is anisotropically formed along a substantially vertical direction with respect to the GaAs substrate. The dummy gate electrode is etched using the etching preventive film as a mask so as to form a first opening in the etching preventive film. Then, a second opening is formed in the region of the protection film corresponding to the region in which the dummy gate electrode was present. A gate electrode is formed to be in contact with the GaAs substrate through the first and second openings.
摘要:
Disclosed is a composite semiconductor device, comprising a composite substrate consisting of first and second semiconductor substrates, one surface of each of which is mirror-polished, so that the mirror-polished surfaces are bonded together. The first semiconductor substrate has a space adjacent to the bonding interface, and an annular groove which communicates with the space from a surface of the first semiconductor substrate opposite the bonding interface, the annular groove being formed in a portion of the first semiconductor substrate corresponding to a peripheral edge portion of the space thereof, at least one pillar projecting through the space to the bonding interface from a surface, which is exposed to the space, of a first portion of the first semiconductor substrate which is defined by the space and the annular groove, a first insulating layer, formed in the annular groove, for electrically isolating the first portion from a second portion of the first semiconductor substrate adjacent thereto, a second insulating layer, formed on the pillar or a bonding interface between the pillar and the second semiconductor substrate, for electrically isolating the first portion from the second semiconductor substrate, a first functional element formed in the first portion, and a second functional element formed in the second portion.
摘要:
A polishing method and apparatus are provided for detecting the polishing end point of a semi-conductor wafer having a polishing film and a stopper film formed thereon. First driving means are provided having a first drive shaft for rotating a polishing plate and a polishing cloth thereon. Second driving means having a second rotatable drive shaft are also provided. Mounting means for mounting the semi-conductor wafer is adapted to be rotated by the second driving means for polishing the wafer. Energy supplying means for supplying prescribed energy to the semi-conductor wafer are also included. Finally, detecting means for detecting a polishing end point of the polishing film is included and detects a variation of the energy supplied to the semi-conductor wafer. Different types of energy can be utilized such as infrared light and a vibration wave.
摘要:
A shot image processing system (100) includes a mobile terminal (1) that shoots an image of a conversion target region containing a character and/or an image, and displays the shot image containing the conversion target region on a display unit; a server that receives the shot image from the mobile terminal (1), wherein the server (2) determines a specifying method for specifying a location of the conversion target region in the received shot image, and transmits the determined specifying method to the mobile terminal, and the mobile terminal (1) specifies the location of the conversion target region in the shot image based on the specifying method received from the server (2), converts the conversion target region specified in the shot image into a prescribed format, and displays a converted image obtained by the conversion on the display unit (16).