Abstract:
The purpose of the present invention is to provide a liquid resin composition which includes polysaccharide nanofibres, and which is used in a three-dimensional moulding production method in which a moulding obtained by curing the resin composition by irradiating the resin composition with active energy rays is three-dimensionally formed, wherein unevenness in strength in the height direction is not readily produced in the formed three-dimensional moulding. The present invention relates to a liquid resin composition which is used to produce a three-dimensional moulding, and which three-dimensionally forms a moulding as a result of being cured by being selectively irradiated with active energy rays. The resin composition includes an active energy ray-curable compound and polysaccharide nanofibres. The ratio of the number of polysaccharide nanofibres having a branched structure to the total number of polysaccharide nanofibres is less than 20%.
Abstract:
The present invention provides: an LED device from which light can be efficiently extracted for a long period of time because of less degradation of a reflective layer for reflecting light emitted from an LED element or the like; and a coating liquid that is used for the production of the LED device. The LED device includes a substrate, an LED element disposed on the substrate, a reflective layer disposed at least around the LED element on the substrate, wherein the reflective layer contains a white pigment and a polysiloxane, the rate of decrease in reflectance of light with a wavelength of 500 nm of the reflective layer after storage of the reflective layer at 180° C. for 1,000 hours is 10% or less of the reflectance before storage at 180° C., and the reflective layer has no glass transition point in the range of from −70° C. to 150° C.
Abstract:
A method of manufacturing a light-emitting device includes forming a wave length conversion portion on a light-emitting element. The light emitting device includes a light-emitting element which emits light of a predetermined wavelength and a wavelength conversion portion which includes a fluorescent substance which is excited by the light emitted from the light-emitting element so as to emit fluorescence of a wavelength different from the predetermined wavelength, which wavelength conversion portion is formed by including the fluorescent substance, a layered silicate mineral, and an organometallic compound. The forming the wavelength conversion portion includes forming a fluorescent substance layer on the light-emitting element using a fluorescent substance dispersion liquid including a fluorescent substance and a layered silicate mineral, applying a precursor solution including an organometallic compound on the light-emitting element, and heating the precursor solution applied on the fluorescent substance layer.
Abstract:
The purpose is to provide a phosphor particle dispersion liquid in which the phosphor particles do not settle out when the phosphor dispersion liquid is left to stand. The phosphor dispersion liquid contains phosphor particles, clay mineral particles, inorganic particles, and a solvent. The phosphor dispersion liquid has viscosity η1 of 10 to 500 mPa·s at a shear rate of 1000 (1/s) at 25° C., and viscosity η2 of 1.0×103 to 1.0×105 mPa·s at a shear rate of 1 (1/s) at 25° C.
Abstract:
Provided is a resin composition from which a three-dimensional molding can be produced at an appropriate speed and with high dimensional accuracy, wherein the obtained three-dimensional molding has high strength. This resin composition is used in a method for producing a three-dimensional molding composed of a cured product of a liquid resin composition by selectively irradiating the liquid resin composition with active energy rays. The resin composition includes at least: a first polymerizable compound, in a liquid state at room temperature, having radical polymerizability; a second polymerizable compound, in a liquid state at room temperature, having no radical polymerizability; and a filler, wherein the surface of the filler is covered with the second polymerizable compound.
Abstract:
The purpose is to provide a phosphor particle dispersion liquid in which the phosphor particles do not settle out when the phosphor dispersion liquid is left to stand. The phosphor dispersion liquid contains phosphor particles, clay mineral particles, inorganic particles, and a solvent. The phosphor dispersion liquid has viscosity η1 of 10 to 500 mPa·s at a shear rate of 1000 (1/s) at 25° C., and viscosity η2 of 1.0×103 to 1.0×105 mPa·s at a shear rate of 1 (1/s) at 25° C.