摘要:
A film of a II-VI group compound semiconductor of at least one of elements belonging to the II group of the periodic table and at least one of elements belonging to the VI group of the periodic table is deposited on a substrate. When the film is deposited on the substrate, a plasma of nitrogen in an excited state is applied to the substrate while removing charged particles from said plasma by a charged particle removing means. The deposited film of a nitrogen-doped II-VI group compound semiconductor has an increased percentage of activated nitrogen atoms and improved crystallinity.
摘要:
By applying the method, the critical film thickness of a compound semiconductor layer is determined, and a semiconductor device having a compound semiconductor layer with an optimized film thickness excellent in emitting performance is manufactured.The relationship between film thickness of a compound semiconductor layer and photoluminescence (PL) corresponding to the film thickness is obtained by measurement, the film thickness where PL exhibits a peak is designated as critical film thickness. The semiconductor layer comprises II-VI group compound semiconductor layer containing at least cadmium. The relationship between the critical film thickness and cadmium composition ratio is obtained by measurement. An equation which approximates the relationship between the critical film thickness and cadmium composition ratio is formulated. When a semiconductor device is manufactured, a compound semiconductor layer is formed so as that the thickness of the layer is thinner than the critical film thickness determined from the equation.
摘要:
By applying the method, the critical film thickness of a compound semiconductor layer is determined, and a semiconductor device having a compound semiconductor layer with an optimized film thickness excellent in emitting performance is manufactured. The relationship between film thickness of a compound semiconductor layer and photoluminescence (PL) corresponding to the film thickness is obtained by measurement, the film thickness where PL exhibits a peak is designated as critical film thickness. The semiconductor layer comprises II-VI group compound semiconductor layer containing at least cadmium. The relationship between the critical film thickness and cadmium composition ratio is obtained by measurement. An equation which approximates the relationship between the critical film thickness and cadmium composition ratio is formulated. When a semiconductor device is manufactured, a compound semiconductor layer is formed so as that the thickness of the layer is thinner than the critical film thickness determined from the equation.
摘要:
It is an object of the present invention to provide a reliable display device and a method for manufacturing the display device reducing the number of manufacturing steps, and with higher yield. A display device according to the invention includes a plurality of display elements each having a first electrode, a layer containing an organic compound, and a second electrode. The display device further includes a heat-resistant planarizing film over a substrate having an insulating surface, a first electrode over the heat-resistant planarizing film, a wiring covering an end portion of the first electrode, a partition wall covering the end portion of first electrode and the wiring, a layer containing an organic compound, and a second electrode over the layer containing an organic compound.
摘要:
The present invention provides a light exposure mask which can form a photoresist layer in a semi-transmissive portion with uniform thickness, and a method for manufacturing a semiconductor device in which the number of photolithography steps (the number of masks) necessary for manufacturing a TFT substrate is reduced by using the light exposure mask. A light exposure mask is used, which includes a transmissive portion, a light shielding portion, and a semi-transmissive portion having a light intensity reduction function where lines and spaces are repeatedly formed, wherein the sum of a line width L of a light shielding material and a space width S between light shielding materials in the semi-transmissive portion satisfies a conditional expression (2n/3)×m≦L+S≦(6n/5)×m when a resolution of a light exposure apparatus is represented by n and a projection magnification is represented by 1/m (m≧1).
摘要:
To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
摘要:
An object of the present invention is to realize a light emitting device having low power consumption and high stability, in addition to improve extraction efficiency of light generated in a light emitting element. At least an interlayer insulating film (including a planarizing film), an anode, and a bank covering an edge portion of the anode contain-chemically and physically stable silicon oxide, or are made of a material containing silicon oxide as its main component in order to accomplish a light emitting device having high stability. Generation of heat in a light emitting panel can be suppressed in addition to increase in efficiency (luminance/current) of a light emitting panel according to the structure of the present invention. Consequently, synergistic effect on reliability of a light emitting device is obtained.
摘要:
It is an object of the present invention to provide a high reliable EL display device and a manufacturing method thereof by shielding intruding moisture or oxygen which is a factor of deteriorating the property of an EL element without enlarging the EL display device.In the invention, application is used as a method for forming a high thermostability planarizing film 16, typically, an interlayer insulating film (a film which serves as a base film of a light emitting element later) of a TFT in which a skeletal structure is configured by the combination of silicon (Si) and oxygen (O). After the formation, an edge portion or an opening portion is formed to have a tapered shape. Afterwards, distortion is given by adding an inert element with a comparatively large atomic radius to modify or highly densify a surface (including a side surface) for preventing the intrusion of moisture or oxygen.
摘要:
It is an object of the present invention to provide a reliable display device and a method for manufacturing the display device reducing the number of manufacturing steps, and with higher yield. A display device according to the invention includes a plurality of display elements each having a first electrode, a layer containing an organic compound, and a second electrode. The display device further includes a heat-resistant planarizing film over a substrate having an insulating surface, a first electrode over the heat-resistant planarizing film, a wiring covering an end portion of the first electrode, a partition wall covering the end portion of first electrode and the wiring, a layer containing an organic compound, and a second electrode over the layer containing an organic compound.
摘要:
A semiconductor light-emitting device longer in life time and higher in reliability is provided which is formed of, on a substrate (1), a first conductivity type cladding layer (3) and a second conductivity type cladding layer (7) made of Zn.sub.x Mg.sub.Y Be.sub.1-x-y S.sub.Z Se.sub.1-z (0
摘要翻译:提供了一种寿命长且可靠性更高的半导体发光器件,其在基板(1),由Zn x Mg y B e 1制成的第一导电型包覆层(3)和第二导电型包覆层(7) -x-ySZSe1-z(0