摘要:
Two different regions of a semiconductor substrate are implanted with dopants/ions. The implantation may occur though a sacrificial oxide layer disposed over the substrate. Following implantation in one or both regions, the substrate may be annealed and the sacrificial oxide layer removed. An oxide layer is then grown over the implanted regions of the substrate. For some embodiments, the substrate may be implanted with arsenic and/or with phosphorus. Further, the anneal may be performed for approximately 30 to 120 minutes at a temperature between approximately 900° C. and 950° C.
摘要:
A method is described for cleaning a semiconductor wafer. The method includes immersing a wafer in a liquid comprising water. The wafer has a front face, a back face, and an edge. The method also includes providing a substantially particle free environment adjacent to the front face and the back face as the liquid is being removed. A step of introducing a carrier gas comprising a cleaning enhancement substance also is included. It is believed that the cleaning enhancement substance dopes any liquid adhered to the front and back faces of the wafer to cause a concentration gradient of the cleaning enhancement substance in the liquid and accelerate removal of the adhered liquid off of the water.
摘要:
A method is provided which includes forming a deep isolation structure within a semiconductor topography. In some cases, the method may include forming a first isolation structure within a semiconductor layer and etching an opening within the isolation structure to expose the semiconductor layer. In addition, the method may include etching the semiconductor layer to form a trench extending through the isolation structure and at least part of the semiconductor layer. In some cases, the method may include removing part of a first fill layer deposited within the trench such that an upper surface of the fill layer is below an upper portion of the trench. In such an embodiment, the vacant portion of the trench may be filled with a second fill layer. In yet other embodiments, the method may include planarizing the first fill layer within the trench and subsequently oxidizing an upper portion of the fill layer.
摘要:
Embodiments of a non-planar memory device including a split charge-trapping region and methods of forming the same are described. Generally, the device comprises: a channel formed from a thin film of semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide overlying the channel; a split charge-trapping region overlying the tunnel oxide, the split charge-trapping region including a bottom charge-trapping layer comprising a nitride closer to the tunnel oxide, and a top charge-trapping layer, wherein the bottom charge-trapping layer is separated from the top charge-trapping layer by a thin anti-tunneling layer comprising an oxide. Other embodiments are also disclosed.
摘要:
An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.
摘要:
An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
摘要:
A method of making a semiconductor structure comprises forming an oxide layer on a substrate; forming a silicon nitride layer on the oxide layer; annealing the layers in NO; and annealing the layers in ammonia. The equivalent oxide thickness of the oxide layer and the silicon nitride layer together is at most 25 Angstroms.
摘要:
A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device.
摘要:
Methods and apparatus for programming and sensing a bi-nitride layer trapped-charge memory device in one of a first and second programmed states or one of a first and second erased states, where the first and second programmed states correspond to first and second uniform trapped charge distributions of a first charge type and the first and second erased states correspond to first and second uniform trapped charge distributions of a second charge type.
摘要:
A semiconductor topography is provided which includes a silicon dioxide layer with a thickness equal to or less than approximately 10 angstroms and a silicon nitride layer arranged upon the silicon dioxide layer. In addition, a method is provided which includes growing an oxide film upon a semiconductor topography in the presence of an ozonated substance and depositing a silicon nitride film upon the oxide film. In some embodiments, the method may include growing the oxide film in a first chamber at a first temperature and transferring the semiconductor topography from the first chamber to a second chamber while the semiconductor topography is exposed to a substantially similar temperature as the first temperature. In either embodiment, the method may be used to form a semiconductor device including an oxide-nitride gate dielectric having an electrical equivalent oxide gate dieletric thickness of less than approximately 20 angstroms.