Abstract:
A circuit board includes a metal substrate, a resin layer, an insulating layer, and a first conductive structure. The metal substrate has a first through hole, and the first through hole has a first width. A portion of the resin layer is disposed in the first through hole. The resin layer has a second through hole. The second through hole has a second width. The insulating layer is disposed on at least one surface of the metal substrate, and a portion of the insulating layer contacts the resin layer. The first conductive structure is disposed in the second through hole. The first conductive structure penetrates through the metal substrate. The first width is greater than the second width. A manufacturing method of the circuit board is also provided.
Abstract:
A light-emitting device including a substrate, an insulating layer, an inner circuit structure, a plurality of light-emitting elements, an insulating encapsulation layer, and a transparent conductive layer is provided. The insulating layer is disposed on the substrate. The inner circuit structure is disposed on the insulating layer. The light-emitting elements are correspondingly disposed on the inner circuit structure. The insulating encapsulation layer is disposed on the inner circuit structure. The insulating encapsulating layer covers a portion of the inner circuit structure and encapsulates the light-emitting elements. The transparent conductive layer is disposed on the insulating encapsulating layer. The transparent conductive layer electrically connects the light-emitting elements, and serially connects the light-emitting elements.
Abstract:
An organic light emitting display device including a substrate, an anode, a hole transport layer, a cathode, an electron transport layer and an organic light emitting layer is provided. The anode is located on the substrate. The hole transport layer is located on the anode. The cathode is located on the substrate. The electron transport layer is located on the cathode. The organic light emitting layer is located between the hole transport layer and the electron transport layer. A vertical projection of the anode on the substrate is not overlapped with a vertical projection of the cathode on the substrate.
Abstract:
An organic light emitting display device including a substrate, an anode, a hole transport layer, a cathode, an electron transport layer and an organic light emitting layer is provided. The anode is located on the substrate. The hole transport layer is located on the anode. The cathode is located on the substrate. The electron transport layer is located on the cathode. The organic light emitting layer is located between the hole transport layer and the electron transport layer. A vertical projection of the anode on the substrate is not overlapped with a vertical projection of the cathode on the substrate.
Abstract:
A circuit board includes a metal substrate, a resin layer, an insulating layer, and a first conductive structure. The metal substrate has a first through hole, and the first through hole has a first width. A portion of the resin layer is disposed in the first through hole. The resin layer has a second through hole. The second through hole has a second width. The insulating layer is disposed on at least one surface of the metal substrate, and a portion of the insulating layer contacts the resin layer. The first conductive structure is disposed in the second through hole. The first conductive structure penetrates through the metal substrate. The first width is greater than the second width. A manufacturing method of the circuit board is also provided.
Abstract:
A light-emitting device including a substrate, an insulating layer, an inner circuit structure, a plurality of light-emitting elements, an insulating encapsulation layer, and a transparent conductive layer is provided. The insulating layer is disposed on the substrate. The inner circuit structure is disposed on the insulating layer. The light-emitting elements are correspondingly disposed on the inner circuit structure. The insulating encapsulation layer is disposed on the inner circuit structure. The insulating encapsulating layer covers a portion of the inner circuit structure and encapsulates the light-emitting elements. The transparent conductive layer is disposed on the insulating encapsulating layer. The transparent conductive layer electrically connects the light-emitting elements, and serially connects the light-emitting elements.
Abstract:
An electronic apparatus and an operating method of the electronic apparatus are provided. The electronic apparatus includes a display unit, a base, a touch pad and a processing unit. The base is coupled to the display unit. The touch pad is disposed on the base, includes touch areas and receives a touch action performed by the user on any touch area. The processing unit is coupled to the touch pad and sets a display frame of the display unit into display areas according to a position of each touch area, so that each touch area has the corresponding display area at a corresponding position on the display unit. After the touch pad received a first touch event, the processing unit obtains a first touch area where the first touch event is generated, and displays a first user interface in a first display area corresponding to the first touch area.
Abstract:
An apparatus and a method for frequency locking are provided. The apparatus includes a phase-locked loop (PLL), a local clock generator, a data buffer unit and a control unit. The PLL locks the phase and the frequency of a radio frequency signal to generate a recovery clock signal and received data. The data buffer unit writes the received data into an elastic buffer of the data buffer unit according to the frequency of the recovery clock signal, and reads the received data from the elastic buffer according to the frequency of a local clock signal generated by the local clock generator. The control unit obtains a write-in address and a read-out address in the elastic buffer, and sends a control signal to the local clock generator for adjusting the frequency of the local clock signal according to relationship between the write-in address and the read-out address.
Abstract:
A universal serial bus hybrid footprint design is described herein. The design includes an outer row of one or more surface mount technology (SMT) contacts and an inner row of one or more printed through holes (PTH). The hybrid footprint design enables a data through put of at least 10 Gbps.
Abstract:
A clock regeneration method, for generating a clock signal for being utilized by a receiver/transceiver/receiver system/transceiver system, includes: performing data/pattern detection on at least one input signal to generate recovered data; detecting at least one synchronization pattern in the input signal according to a synchronization pattern rule, and generating a synchronization signal corresponding to the synchronization pattern; and performing frequency-locking on the synchronization signal to generate the clock signal. More particularly, the step of detecting the at least one synchronization pattern in the input signal according to the synchronization pattern rule further comprises: detecting the at least one synchronization pattern by performing synchronization pattern detection on the recovered data. An associated reference-less receiver and an associated crystal-less system are also provided.