摘要:
In a semiconductor device including a carbon-containing electrode and a method for fabricating the same, an electrode has a high work function due to a carbon-containing TiN layer contained therein. It is possible to provide a dielectric layer having a high permittivity and thus to reduce the leakage current by forming an electrode having a high work function. Also, sufficient capacitance of a capacitor can be secured by employing an electrode having a high work function and a dielectric layer having a high permittivity.
摘要:
In a semiconductor device including a carbon-containing electrode and a method for fabricating the same, an electrode has a high work function due to a carbon-containing TiN layer contained therein. It is possible to provide a dielectric layer having a high permittivity and thus to reduce the leakage current by forming an electrode having a high work function. Also, sufficient capacitance of a capacitor can be secured by employing an electrode having a high work function and a dielectric layer having a high permittivity.
摘要:
A capacitor includes a bottom electrode, a dielectric layer and a top electrode over a substrate. A RuXTiYOZ film is included in at least one of the bottom and top electrodes, where x, y and z are positive real numbers. A method of fabricating the capacitor through a sequential formation of a bottom electrode, a dielectric layer and a top electrode over a substrate includes forming a RuXTiYOZ film during a formation of at least one of the bottom electrode and top electrode, where x, y and z are positive real numbers.
摘要:
A semiconductor device and a method of fabricating the same include an electrode having a nickel layer with impurities. The electrode having a nickel layer with impurities can be a gate electrode or a capacitor electrode. The electrode having a nickel layer with impurities may include a combination of a pure nickel layer and a nickel layer with impurities.
摘要:
A semiconductor device, and a method of fabricating the semiconductor device, which is able to prevent a leaning phenomenon from occurring between the adjacent storage nodes. The method includes forming a plurality of multi-layered pillar type storage nodes each of which is buried in a plurality of mold layers, wherein the uppermost layers of the multi-layered pillar type storage nodes are fixed by a support layer, etching a portion of the support layer to form an opening, and supplying an etch solution through the opening to remove the multiple mold layers. A process of depositing and etching the mold layer by performing the process 2 or more times to form the multi-layered pillar type storage node. Thus, the desired capacitance is sufficiently secured and the leaning phenomenon is avoided between adjacent storage nodes.
摘要:
An electrode of a semiconductor device includes a TiCN layer and a TiN layer. A method for fabricating an electrode of a semiconductor device includes preparing a substrate, forming a TiCN layer, and forming a TiN layer.
摘要:
An electrode of a semiconductor device includes a TiCN layer and a TiN layer. A method for fabricating an electrode of a semiconductor device includes preparing a substrate, forming a TiCN layer, and forming a TiN layer.
摘要:
A process condition evaluation method for a liquid crystal display module (LCM) includes: a first step of obtaining a threshold power measuring pattern, an analysis sample for a cell bonding status in an LCD fabrication process, and obtaining a lower substrate sample by separating an upper substrate from the threshold power measuring pattern; a second step of supplying voltages on a gate pad on the lower substrate sample with sequentially increasing a voltage level by a predetermined unit by using an electrical device, and obtaining a threshold current and a threshold voltage by measuring currents at a drain pad whenever voltage increased by a predetermined unit is applied to the gate pad; and a third step of obtaining threshold power based on the threshold current and the threshold voltage, and thereby evaluating process conditions of the LCM.