摘要:
A high-efficiency light emitting diode including: a semiconductor stack positioned on a support substrate, including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; an insulating layer disposed in an opening that divides the p-type compound semiconductor layer and active layer; a transparent electrode layer disposed on the insulating layer and the p-type compound semiconductor layer; a reflective insulating layer covering the transparent electrode layer, to reflect light from the active layer away from the support substrate; a p-electrode covering the reflective insulating layer; and an n-electrode is formed on top of the n-type compound semiconductor layer. The p-electrode is electrically connected to the transparent electrode layer through the insulating layer.
摘要:
A high-efficiency light emitting diode including: a semiconductor stack positioned on a support substrate, including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; an insulating layer disposed in an opening that divides the p-type compound semiconductor layer and active layer; a transparent electrode layer disposed on the insulating layer and the p-type compound semiconductor layer; a reflective insulating layer covering the transparent electrode layer, to reflect light from the active layer away from the support substrate; a p-electrode covering the reflective insulating layer; and an n-electrode is formed on top of the n-type compound semiconductor layer. The p-electrode is electrically connected to the transparent electrode layer through the insulating layer.
摘要:
Provided is a high-efficiency light emitting diode (LED) that includes: a support substrate; a semiconductor stack positioned on the support substrate, the semiconductor stack including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; a first electrode positioned between the support substrate and the semiconductor stack and in ohmic contact with the semiconductor stack; a first bonding pad positioned on a portion of the first electrode that is exposed outside of the semiconductor stack; and a second electrode positioned on the semiconductor stack. Protrusions are formed on exposed surfaces of the semiconductor stack. In addition, the second electrode may be positioned between the first electrode and the support substrate and contacted with the n-type compound semiconductor layer through openings of the semiconductor stack.
摘要:
An exemplary embodiment of the present invention relates to a light emitting diode (LED) including a substrate, a first nitride semiconductor layer arranged on the substrate, an active layer arranged on the first nitride semiconductor layer, a second nitride semiconductor layer arranged on the active layer, a third nitride semiconductor layer disposed between the first nitride semiconductor layer or between the second nitride semiconductor layer and the active layer, the third nitride semiconductor layer comprising a plurality of scatter elements within the third nitride semiconductor layer, and a distributed Bragg reflector (DBR) comprising a multi-layered structure, the substrate being arranged between the DBR and the third nitride semiconductor layer.
摘要:
Provided is a high-efficiency light emitting diode (LED) that includes: a support substrate; a semiconductor stack positioned on the support substrate, the semiconductor stack including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; a first electrode positioned between the support substrate and the semiconductor stack and in ohmic contact with the semiconductor stack; a first bonding pad positioned on a portion of the first electrode that is exposed outside of the semiconductor stack; and a second electrode positioned on the semiconductor stack. Protrusions are formed on exposed surfaces of the semiconductor stack. In addition, the second electrode may be positioned between the first electrode and the support substrate and contacted with the n-type compound semiconductor layer through openings of the semiconductor stack.
摘要:
An approach is provided for fabricating a light emitting diode using a laser lift-off apparatus. The approach includes growing an epitaxial layer including a first conductive-type compound semiconductor layer, an active layer and a second conductive-type compound semiconductor layer on a first substrate, bonding a second substrate, having a different thermal expansion coefficient from that of the first substrate, to the epitaxial layers at a first temperature of the first substrate higher than a room temperature, and separating the first substrate from the epitaxial layer by irradiating a laser beam through the first substrate at a second temperature of the first substrate higher than the room temperature but not more than the first temperature.
摘要:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
摘要:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
摘要:
Disclosed is a method of fabricating a light emitting diode using a laser lift-off apparatus. The method includes growing an epitaxial layer including a first conductive-type compound semiconductor layer, an active layer and a second conductive-type compound semiconductor layer on a first substrate, bonding a second substrate, having a different thermal expansion coefficient from that of the first substrate, to the epitaxial layers at a first temperature of the first substrate higher than a room temperature, and separating the first substrate from the epitaxial layer by irradiating a laser beam through the first substrate at a second temperature of the first substrate higher than the room temperature but not more than the first temperature. Thus, during a laser lift-off process, focusing of the laser beam can be easily achieved and the epitaxial layers are prevented from cracking or fracture. The laser lift-off process is performed by a laser lift-off apparatus including a heater.
摘要:
Disclosed is a method of fabricating a light emitting diode using a laser lift-off apparatus. The method includes growing an epitaxial layer including a first conductive-type compound semiconductor layer, an active layer and a second conductive-type compound semiconductor layer on a first substrate, bonding a second substrate, having a different thermal expansion coefficient from that of the first substrate, to the epitaxial layers at a first temperature of the first substrate higher than a room temperature, and separating the first substrate from the epitaxial layer by irradiating a laser beam through the first substrate at a second temperature of the first substrate higher than the room temperature but not more than the first temperature. Thus, during a laser lift-off process, focusing of the laser beam can be easily achieved and the epitaxial layers are prevented from cracking or fracture. The laser lift-off process is performed by a laser lift-off apparatus including a heater.