Abstract:
The invention provides a light-emitting diode device and a method for fabricating the same. The light-emitting diode device includes a metal substrate. A light-emitting diode structure is bonded on the metal substrate. The light-emitting diode structure includes a first type semiconductor substrate and a second type semiconductor layer. The first type semiconductor layer has a first surface and a second surface opposite to the first surface. The second type semiconductor layer is in contact with the metal substrate. A light-emitting layer is disposed between the first type semiconductor substrate and the second type semiconductor layer. A portion of the second surface and a sidewall adjacent to the second surface are uneven roughened surfaces.
Abstract:
The disclosure provides a heat sink for electrical elements and a light-emitting device containing thereof. The heat sink includes a radiating substrate and at least one hollow radiating channel. In which, the hollow radiating channel is horizontally embedded in the radiating substrate, and has two openings disposed on the same site or the opposite sites of the radiating substrate, so that gas may flow in the hollow radiating channel and remove heat of the radiating substrate. And a light-emitting device containing the heat sink is also provided.
Abstract:
A LED sub-mount includes a substrate body and a plurality of first electrical-conductive layers. The substrate body has a first surface. The first electrical-conductive layers are positioned on the first surface of the substrate body, wherein the first surface between every adjacent two of the first electrical-conductive layers has an adhesive-filling groove.
Abstract:
A LED carrier includes a substrate, a conductive layer, an adhesive layer, and a reflector. The conductive layer is disposed on the substrate, and has a bonding portion and an extending portion. The bonding portion has a top surface higher than a top surface of the extending portion. The adhesive layer covers the extending portion of the conductive layer and exposes the bonding portion of the conductive layer. The reflector is disposed over the adhesive layer. The adhesive layer has a hook portion in contact with a corner of the reflector.
Abstract:
A light emitting device manufacturing method includes the following steps. A sub-mount, which has a plurality of electrical-conductive layers, is provided, and a surface between every adjacent two of the electrical-conductive layers has an adhesive-filling groove. An LED chip, which has a bottom substrate, is mounted on the sub-mount by a flip-chip way, and two electrodes of the LED chip are in contact with adjacent two of the electrical-conductive layers. Glue is filled along the adhesive-filling groove to be guided into a gap between the LED chip and the sub-mount.
Abstract:
A LED sub-mount includes a substrate body and a plurality of first electrical-conductive layers. The substrate body has a first surface. The first electrical-conductive layers are positioned on the first surface of the substrate body, wherein the first surface between every adjacent two of the first electrical-conductive layers has an adhesive-filling groove.