Abstract:
The present invention provides a novel diamine compound capable of producing a polymer which exhibits greatly enhanced mechanical properties and heat resistance while maintaining transparency. A film including a polymer produced using the diamine compound has excellent transparency, heat resistance, mechanical strength and flexibility, and thus can be used in various fields, such as in a device substrate, a display cover substrate, an optical film, an Integrated circuit (IC) package, an adhesive film, a multi-layer flexible printed circuit (FPC), a tape, a touch panel and an optical disc protection film, and the like.
Abstract:
The present invention relates to a polyimide-based solution that can be used to produce an isotropic transparent polyimide-based film with high heat resistance and excellent mechanical properties as well as high transmittance. A coating of the polyimide-based solution on a substrate has a haze of 1% or less after storage at a temperature of 30° C. and a humidity of 70% for 30 minutes.
Abstract:
A polyimide copolymer according to the present invention has a particular structure in which siloxane structures are distributed in a nanosize in a polymer and thus enables excellent transparency, heat resistance, mechanical strength and flexibility and effective reduction of residual stress, and thus can be used in various fields such as a substrate for a device, a cover substrate for a display, an optical film, an integrated circuit (IC) package, an adhesive film, a multi-layer flexible printed circuit (FPC), tape, a touch panel and a protective film for an optical disk.
Abstract:
The present invention provides a polyimide film forming composition which comprises a polyamic acid or a polyimide in an oligomer form or in a low-molecular weight form, the polyamic acid or the polyimide being prepared from a diamine containing an intramolecular imide group, and thus can provide a polyimide film having improved heat resistance while retaining optical properties thereof. In addition, the polyimide film according to the present invention can reduce not only a laser energy density (E/D) required in the laser exfoliation process but also remarkably decrease an amount of ash generated by an exfoliation process, thereby further improving the reliability of a device in a display manufacturing process.
Abstract:
The present invention relates to a laminated film roll body, around which a laminated film is wound, the laminated film including: a first polyimide film; and a second polyimide film laminated on the first polyimide film and made of a fluorine-based, siloxane-based, or amine-based polyamic acid, wherein the second polyimide film has a glass transition temperature of 350° C. or higher when measured by a temperature elevation rate of 20° C./min. The laminated film roll body can be used in a continuous manufacturing process of a flexible device to improve process yield and efficiency.
Abstract:
A modified polyimide represented by Formula 4: wherein D is a heat curable or photocurable functional group, R is a divalent or higher polyvalent organic group, and n is an integer of 1 or greater, X1, X2, X3, and X4 are each independently a tetravalent organic group derived from a tetracarboxylic dianhydride, Y1, Y2, and Y3 are each independently a divalent organic group derived from a diamine, p, q, r, and v are each independently an integer of 0 or greater, with the proviso that p, q, r, and v are not simultaneously 0, and r+v is 1 or greater. Additionally, curable resin compositions including the modified polyimide, as well as polyimide films including a cured product of the curable resin composition, and methods for preparing the modified polyimide.
Abstract:
Disclosed is a polyimide precursor composition for the production of a flexible board of a photoelectronic device. The polyimide precursor composition includes a polyimide precursor derived from a diamine or acid dianhydride including a structure of Formula 1: wherein R1 to R8, m1, m2, and m3 are as defined in the specification. Also disclosed is a polyimide film produced from the polyimide precursor composition. The polyimide film is obtained by applying the precursor composition to a substrate and curing the composition. The polyimide film has high transparency and good heat resistance. In addition, the polyimide film exhibits good dimensional stability because the substrate does not undergo an increase in stress even during high-temperature heat treatment.
Abstract:
The present invention relates to a laminate including an alkali metal-doped layer. The laminate is processable at high temperatures of at least 550° C. and has excellent durability and barrier properties. Due to these advantages, the laminate can be used to fabricate a thin film solar cell with high flexibility and improved energy conversion efficiency. The present invention also relates to a thin film solar cell including the laminate.
Abstract:
Disclosed is a method for forming a metal particle layer having irregular structures in a simpler manner. The method includes bringing a base into contact with an activation solution including a metal compound, an organic acid activator, and a complexing agent. The base is oxidized by the organic acid activator to produce electrons and the metal compound is reduced by the electrons to deposit metal particles on the surface of the base. Also disclosed is a method for fabricating a light emitting device with improved light extraction efficiency that uses a metal particle layer formed by the above method.
Abstract:
The present invention relates to a laminate and a device fabricated using the laminate. The laminate includes a debonding layer including a polyimide resin between a carrier substrate and a flexible substrate. The adhesive strength of the debonding layer to the flexible substrate is changed by a physical stimulus. According to the present invention, the flexible substrate can be easily separated from the carrier substrate without the need for further processing such as laser or light irradiation. Therefore, the use of the laminate facilitates the fabrication of the device having the flexible substrate. The device may be, for example, a flexible display device. In addition, the device can be prevented from deterioration of reliability and occurrence of defects caused by laser or light irradiation. This ensures improved characteristics and high reliability of the device.