Abstract:
Phase detectors and timing recovery techniques that do not require error latches nor oversampling of the received input data are disclosed. The phase detection method includes separating an input signal into N consecutive data bits; comparing at least two consecutive data bits within the N consecutive data bits; estimating a data bit value for each of the N consecutive data bits; and determining a phase difference based on a data bit pattern formed by the data bit values of the N consecutive data bits and the comparison of the at least two consecutive data bits within the N consecutive data bits.
Abstract:
A SerDes receiver device can receive binary signals via wireline channel such that information recovery is primarily or entirely performed via DSP algorithms in the digital domain includes an analog to digital converter, adaptation and calibration blocks, and a sequential n-way parallel equalization data path. The data path provides preliminary equalization of digital input symbols through a feed forward equalizer block followed by a decision feedback equalizer block, to which a k-slice decision feed forward equalizer block is appended for generating equalized hard decision outputs. The decision feed forward equalizer block may include a concatenation of cascading DFFE slices to improve the performance of the data path.
Abstract:
A reconfigurable P-way parallel N-tap feed forward equalizer includes an adaptive filter configured to generate a series of coefficients (taps) and an input register for storing input symbols. A variable cursor position defined by a parameter corresponding to a position in the input register selects a set of pre-cursor and post-cursor taps for dynamic ISI correction of a like set of pre-cursor and post-cursor symbols. Multiplier banks generate partial result symbols by applying the taps to the set of input symbols, and a set of combiners or adder banks generate equalized output symbols from the partial result symbols. Two multiplexers adjust input symbols and coefficients according to the parameter, and a controller allows selection of an optimal parameter, and thus an optimal variable cursor position. The coefficient corresponding to the parameter may additionally be preset to save storage space.
Abstract:
Described embodiments apply equalization to an input signal to a receiver such as a serial-deserializer. The receiver has an analog-to-digital converter (ADC), an M-way parallelizer, N serial buffers, N prefix buffers, and N decision feedback equalizers (DFEs), where M and N are greater than one. The ADC digitizes the input signal to form digitized symbols. The parallelizer assembles the digitized symbols into parallel sets of M digitized symbols. Each serial buffer has slots of M locations per slot and stores one set of M digitized symbols in one of the slots. The DFEs are responsive to common tap weight coefficients and produce parallel sets of M recovered data bits. Each DFE is first trained using sets of past digitized symbols loaded into a corresponding one of the prefix buffers and then processes digitized symbols stored in a corresponding one of the serial buffers.
Abstract:
An N-way parallel, unrolled decision feedback equalizer for a SerDes receiver can convert between four-tap PAM-2 and two-tap PAM-4 mode, maximizing hardware through the use of mode control multiplexers. Each of N interleaved parallel branches includes an ISI correction stage for generating a partial result approximating intersymbol interference and comparing the partial result to a threshold, a carry look-ahead stage for generating a second partial result based in part on previously generated partial results, and a decision feedback stage for generating a final decision based on previous branches. Mode control multiplexers can select from PAM-2 and PAM-4 operating modes, PAM-2 and MAP-4 inputs at various stages, or from single-bit PAM-2 and two-bit PAM-4 outputs. ISI correction can additionally be reformulated to incorporate comparing raw input symbols to a combination of approximated ISI and a threshold.
Abstract:
Phase detectors and timing recovery techniques that do not require error latches nor oversampling of the received input data are disclosed. The phase detection method includes separating an input signal into N consecutive data bits; comparing at least two consecutive data bits within the N consecutive data bits; estimating a data bit value for each of the N consecutive data bits; and determining a phase difference based on a data bit pattern formed by the data bit values of the N consecutive data bits and the comparison of the at least two consecutive data bits within the N consecutive data bits.
Abstract:
Described embodiments apply equalization to an input signal to a receiver such as a serial-deserializer. The receiver has an analog-to-digital converter (ADC), an M-way parallelizer, N serial buffers, N prefix buffers, and N decision feedback equalizers (DFEs), where M and N are greater than one. The ADC digitizes the input signal to form digitized symbols. The parallelizer assembles the digitized symbols into parallel sets of M digitized symbols. Each serial buffer has slots of M locations per slot and stores one set of M digitized symbols in one of the slots. The DFEs are responsive to common tap weight coefficients and produce parallel sets of M recovered data bits. Each DFE is first trained using sets of past digitized symbols loaded into a corresponding one of the prefix buffers and then processes digitized symbols stored in a corresponding one of the serial buffers.
Abstract:
Modular, low power serializer-deserializer receivers and methods for configuring such receivers are disclosed. The disclosed receivers are configured to sample input signals at the front-end utilizing a plurality of track-and-hold circuits time-interleaved based on a plurality of phase-shifted clock signals. The disclosed receivers are also modular and various processing components, including analog front-end and equalizers, are selectively utilized based on the determined length of the communication channel, ranging from ultra short reach applications to very short reach, medium reach, long reach and extra long reach applications.
Abstract:
A multi-stage system and method for correcting intersymbol interference is disclosed. The system includes a first estimation module configured to sample an input signal to produce a first set of estimated data bits. The system also includes a second estimation module configured to sample the input signal phase shifted by a predetermined phase shift unit to produce a second set of estimated data bits, wherein the second set of estimated data bits are produced at least partially based on the first set of estimated data bits and at least one pre-cursor coefficient.
Abstract:
An interleaved track-and-hold front-end with multiphase clocks computes and propagates unrolled decision feedback equalization results along a pipeline with the final outputs selected from one of the interleaved previous output bits with a multiplexer operating over multiple unit intervals instead of one unit interval. An n-way interleaved serializer/deserializer utilizes an n unit interval multiplexer or n one unit interval multiplexers. Pipelined decision feedback equalization allows multiple, slower multiplexers.