摘要:
The present invention includes a multilevel air-gap-containing interconnect wiring structure including: a collection of interspersed line levels and via levels, the via levels and line levels containing conductive via and line features embedded in a dielectric having an air-gap and solid dielectric. The air-gap and solid dielectric includes (i) one or more solid dielectrics only in the shadows of the conductive features in overlying levels and (ii) a gaseous dielectric elsewhere in the structure. The collection of line levels and via levels are topped by a laminated thin, taut insulating cover layer having openings to selected conductive features in the topmost underlying line or via layer, and the openings are filled with conductive material connecting to terminal pad contacts on the insulating cover layer.
摘要:
A method to achieve a very low effective dielectric constant in high performance back end of the line chip interconnect wiring and the resulting multilayer structure are disclosed. The process involves fabricating the multilayer interconnect wiring structure by methods and materials currently known in the state of the art of semiconductor processing; removing the intralevel dielectric between the adjacent metal features by a suitable etching process; applying a thin passivation coating over the exposed etched structure; annealing the etched structure to remove plasma damage; laminating an insulating cover layer to the top surface of the passivated metal features; optionally depositing an insulating environmental barrier layer on top of the cover layer; etching vias in the environmental barrier layer, cover layer and the thin passivation layer for terminal pad contacts; and completing the device by fabricating terminal input/output pads. The method obviates issues such as processability and thermal stability associated with low dielectric constant materials by avoiding their use. Since air, which has the lowest dielectric constant, is used as the intralevel dielectric the structure created by this method would possess a very low capacitance and hence fast propagation speeds. Such structure is ideally suitable for high density interconnects required in high performance microelectronic device chips.
摘要:
The present invention utilizes a reducing plasma treatment step to enhance the adhesion of a subsequently deposited inorganic barrier film to a copper wire or via present in a semiconductor interconnect structure such as a dual damascene structure. Interconnect structure including a material layer of Cu, Si and O, as essential elements, is formed between said copper wire or via and the inorganic barrier film.
摘要:
The present invention utilizes a reducing plasma treatment step to enhance the adhesion of a subsequently deposited inorganic barrier film to a copper wire or via present in a semiconductor interconnect structure such as a dual damascene structure. Interconnect structure comprising a material layer of Cu, Si and O, as essential elements, is formed between said copper wire or via and the inorganic barrier film.
摘要:
The invention relates to a process for forming a circuit assembly comprising (i) coating onto a substrate a layer of polyamic ester selected from a unique class of polyamic esters; (ii) imidizing the polyamic ester to form a layer of polyimide having an even surface and (iii) forming circuit conductors on the even surface of the polyimide.
摘要:
A method of forming a magnetic switching device is provided. The method includes depositing a bilayer hardmask, which may comprise a first mask layer of titanium nitride with a second mask layer of tungsten formed thereon. A first lithography process is performed to pattern the second mask layer, and a second lithography process is performed to pattern the first mask layer. Thereafter, the magnetic tunnel junction stack may be patterned in accordance with the first mask layer. An etching process may be performed to further pattern the first mask layer in accordance with the second mask layer. An optional passivation layer may be formed over the first mask layer and the second mask layer.
摘要:
A method for aligning an opaque, active device in a semiconductor structure includes forming an opaque layer over an optically transparent layer formed on a lower metallization level, the lower metallization level including one or more alignment marks formed therein. A portion of the opaque layer is patterned and opened corresponding to the location of the one or more alignment marks in the lower metallization level so as to render the one or more alignment marks optically visible. The opaque layer is then patterned with respect to the lower metallization level, using the optically visible one or more alignment marks.
摘要:
A method for etching an insulating layer without damage to the conducting layer and associated liner layer within the insulating layer. A dielectric layer is deposited on a semiconductor substrate and then patterned. A liner layer and a conducting layer are then deposited within the patterned dielectric. A passivating layer is deposited on top of the conducting layer after the conducting layer has been planarized through chemical-mechanical polishing while simultaneously etching the dielectric layer through a process that does not damage the underlying conducting and liner layers. The insulating layer is preferably a dielectric such as silicon dioxide and the liner layer is tantalum, tantalum nitride or a combination of the two. The passivating layer preferably consists of carbon and fluorine bound up in various chemical forms. The conducting layer preferably consists of copper. Recipes for simultaneously forming the passivating layer and etching the dielectric layer, and for removing the passivating layer without damaging the underlying conducting and liner layers are provided.
摘要:
The present invention is related to a method for forming vertical conductive structures by electroplating. Specifically, a template structure is first formed, which includes a substrate, a discrete metal contact pad located on the substrate surface, an inter-level dielectric (ILD) layer over both the discrete metal contact pad and the substrate, and a metal via structure extending through the ILD layer onto the discrete metal contact pad. Next, a vertical via is formed in the template structure, which extends through the ILD layer onto the discrete metal contact pad. A vertical conductive structure is then formed in the vertical via by electroplating, which is conducted by applying an electroplating current to the discrete metal contact pad through the metal via structure. Preferably, the template structure comprises multiple discrete metal contact pads, multiple metal via structures, and multiple vertical vias for formation of multiple vertical conductive structures.
摘要:
A method of forming vertical contacts in an integrated circuit that couple one or more metal lines in a given metallization level to first and second features occupying different levels in the integrated circuit comprises various processing steps. A first etch stop layer is formed overlying at least of portion of the first feature while a second etch stop layer is formed overlying at least a portion of the second feature. An ILD layer is formed overlying the first and second etch stop layers. A photolithographic mask is formed overlying the ILD layer. The photolithographic mask defines a first opening over the first feature and a second opening over the second feature. A first etch process etches a first hole in the ILD layer through the first opening in the photolithographic mask that lands on the first etch stop layer and etches a second hole in the ILD layer through the second opening that lands on the second etch stop layer. Subsequently, a second etch process further etches the first hole so that it lands on the first feature.