摘要:
The present invention includes a multilevel air-gap-containing interconnect wiring structure including: a collection of interspersed line levels and via levels, the via levels and line levels containing conductive via and line features embedded in a dielectric having an air-gap and solid dielectric. The air-gap and solid dielectric includes (i) one or more solid dielectrics only in the shadows of the conductive features in overlying levels and (ii) a gaseous dielectric elsewhere in the structure. The collection of line levels and via levels are topped by a laminated thin, taut insulating cover layer having openings to selected conductive features in the topmost underlying line or via layer, and the openings are filled with conductive material connecting to terminal pad contacts on the insulating cover layer.
摘要:
A method to achieve a very low effective dielectric constant in high performance back end of the line chip interconnect wiring and the resulting multilayer structure are disclosed. The process involves fabricating the multilayer interconnect wiring structure by methods and materials currently known in the state of the art of semiconductor processing; removing the intralevel dielectric between the adjacent metal features by a suitable etching process; applying a thin passivation coating over the exposed etched structure; annealing the etched structure to remove plasma damage; laminating an insulating cover layer to the top surface of the passivated metal features; optionally depositing an insulating environmental barrier layer on top of the cover layer; etching vias in the environmental barrier layer, cover layer and the thin passivation layer for terminal pad contacts; and completing the device by fabricating terminal input/output pads. The method obviates issues such as processability and thermal stability associated with low dielectric constant materials by avoiding their use. Since air, which has the lowest dielectric constant, is used as the intralevel dielectric the structure created by this method would possess a very low capacitance and hence fast propagation speeds. Such structure is ideally suitable for high density interconnects required in high performance microelectronic device chips.
摘要:
The present invention utilizes a reducing plasma treatment step to enhance the adhesion of a subsequently deposited inorganic barrier film to a copper wire or via present in a semiconductor interconnect structure such as a dual damascene structure. Interconnect structure comprising a material layer of Cu, Si and O, as essential elements, is formed between said copper wire or via and the inorganic barrier film.
摘要:
The present invention utilizes a reducing plasma treatment step to enhance the adhesion of a subsequently deposited inorganic barrier film to a copper wire or via present in a semiconductor interconnect structure such as a dual damascene structure. Interconnect structure including a material layer of Cu, Si and O, as essential elements, is formed between said copper wire or via and the inorganic barrier film.
摘要:
Sealing a via using a soventless, low viscosity, high temperature stable polymer or a high solids content polymer solution of low viscosity, where the polymeric material is impregnated within the via at an elevated temperature. A supply chamber is introduced to administer the polymeric material at an elevated temperature, typically at a temperature high enough to liquefy the polymeric material. The polymeric material is introduced through heated supply lines under force from a pump, piston, or a vacuum held within said supply chamber.
摘要:
A process is disclosed for producing a metal-organic polymer combination by contacting the polymer with a plasma followed by an aqueous solution of a metal salt. In one embodiment a water or nitrous oxide plasma is used to treat a polyimide or a fluorinated polymer. The polymer is combined with a metal cation, the metal being a catalyst for a conventional electroless coating after which it is contacted with an electroless metal plating bath for the formation of electrical circuits and especially for plating high aspect ratio vias in microcircuits. Unlike the conventional electroless process, the cationic catalytic metal is not reduced to a zero valent metal catalyst prior to the application of the electroless metal coating solution.The process also improves the wettability of the polymer, especially the fluorinated polymer and is especially useful in improving the wettability of high aspect ratio vias.
摘要:
The present invention utilizes a reducing plasma treatment step to enhance the adhesion of a subsequently deposited inorganic barrier film to a copper wire or via present in a semiconductor interconnect structure such as a dual damascene structure.
摘要:
The present disclosure relates generally to semiconductor, integrated circuits, and particularly, but not by way of limitation, to centrifugal methods of filling high-aspect ratio vias and trenches with powders, pastes, suspensions of materials to act as any of a conducting, structural support, or protective member of an electronic component.