摘要:
A method of preventing decreasing threshold voltage of a MOS transistor by formation of shallow trench isolation. Shallow trenches are formed to isolate first active regions and second active regions. The first active regions are located within a core circuit region, while the second active regions are located within a peripheral circuit region. A first ion implantation to form well regions is performed on the first and second active regions, respectively. A second ion implantation is performed on the second active region and edges of the first active regions to form second channel doping regions and to increase ion concentration at the edges of the first active regions, respectively. A third ion implantation is further performed on the first active regions to form first channel doping regions.
摘要:
The disclosure relates to a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a cavity below the major surface; a strained material in the cavity, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; a Ge-containing dielectric layer over the strained material; and a metal layer over the Ge-containing dielectric layer.
摘要:
A method of manufacturing a semiconductor structure is provided. The method includes forming a hard mask pattern on a semiconductor substrate, wherein the hard mask pattern covers active regions; forming a trench in the semiconductor substrate within an opening defined by the hard mask pattern; filling the trench with a dielectric material, resulting in a trench isolation feature; performing an ion implantation to the trench isolation feature using the hard mask pattern to protect active regions of the semiconductor substrate; and removing the hard mask pattern after the performing of the ion implantation.
摘要:
A semiconductor device and method of manufacture thereof wherein a PMOS source/drain region of a transistor within the substrate includes a first strained layer in the PMOS source/drain region and a first capping layer in contact with the first strained layer. Further, the semiconductor device and method provide for an NMOS source/drain region of a transistor within the substrate including a second strained layer in the NMOS source/drain region and a second capping layer in contact with the second strained layer.
摘要:
A method for forming stressors in a semiconductor substrate is provided. The method includes providing a semiconductor substrate including a first device region and a second device region, forming shallow trench isolation (STI) regions with a high-shrinkage dielectric material in the first and the second device regions wherein the STI regions define a first active region in the first device region and a second active region in the second device region, forming an insulation mask over the STI region and the first active region in the first device region wherein the insulation mask does not extend over the second device region, and performing a stress-tuning treatment to the semiconductor substrate. The first active region and second active region have tensile stress and compressive stress respectively. An NMOS and a PMOS device are formed on the first and second active regions, respectively.
摘要:
A semiconductor apparatus includes fin field-effect transistor (FinFETs) having controlled fin heights. The apparatus includes a high fin density area and a low fin density area. Each fin density area includes fins and dielectric material between the fins. The dielectric material includes different dopant concentrations for different fin density areas and is the same material as deposited.
摘要:
The disclosure relates to a Fin field effect transistor (FinFET). An exemplary structure for a FinFET comprises a substrate comprising a top surface; a first fin and a second fin extending above the substrate top surface, wherein each of the fins has a top surface and sidewalls; an insulation layer between the first and second fins extending part way up the fins from the substrate top surface; a first gate dielectric covering the top surface and sidewalls of the first fin having a first thickness and a second gate dielectric covering the top surface and sidewalls of the second fin having a second thickness less than the first thickness; and a conductive gate strip traversing over both the first gate dielectric and second gate dielectric.
摘要:
A method of manufacturing a semiconductor structure is provided. The method includes forming a hard mask pattern on a semiconductor substrate, wherein the hard mask pattern covers active regions; forming a trench in the semiconductor substrate within an opening defined by the hard mask pattern; filling the trench with a dielectric material, resulting in a trench isolation feature; performing an ion implantation to the trench isolation feature using the hard mask pattern to protect active regions of the semiconductor substrate; and removing the hard mask pattern after the performing of the ion implantation.
摘要:
A method for improving uniformity of stressors of MOS devices is provided. The method includes forming a gate dielectric over a semiconductor substrate, forming a gate electrode on the gate dielectric, forming a spacer on respective sidewalls of the gate electrode and the gate dielectric, forming a recess in the semiconductor adjacent the spacer, and depositing SiGe in the recess to form a SiGe stressor. The method further includes etching the SiGe stressor to improve the uniformity of SiGe stressors.
摘要:
A semiconductor device includes a substrate, a gate structure over the substrate, a first sidewall spacer on a sidewall of the gate structure, a first diffusion region in the substrate and adjacent to the gate structure, the first sidewall spacer and the first diffusion region being on one side of the gate structure, and a first conductive layer in the first diffusion region, the first conductive layer being spaced apart from the first sidewall spacer.