摘要:
Anti-reverse engineering techniques are provided. In one aspect, a method for forming at least one feature in an insulating layer is provided. The method comprises the following steps. Ions are selectively implanted in the insulating layer so as to form at least one implant region within the insulating layer, the implanted ions being configured to alter an etch rate through the insulating layer within the implant region. The insulating layer is etched to, at the same time, form at least one void both within the implant region and outside of the implant region, wherein the etch rate through the insulating layer within the implant region is different from an etch rate through the insulating layer outside of the implant region. The void is filled with at least one conductor material to form the feature in the insulating layer.
摘要:
A row redundancy system is provided for replacing faulty wordlines of a memory array having a plurality of banks. The row redundancy system includes a remote fuse bay storing at least one faulty address corresponding to a faulty wordline of the memory array; a row fuse array for storing row fuse information corresponding to at least one bank of the memory array; and a copy logic module for copying at least one faulty address stored in the remote fuse bay into the row fuse array; wherein the copy logic module is programmed to copy the at least one faulty address into the row fuse information stored in the row fuse array corresponding to a predetermined number of banks in accordance with a selectable repair field size.
摘要:
An SRAM system is provided having an array of SRAM cells including at least one circuit receiving a first power voltage and a power control circuit for supplying a second power voltage to at least one selected circuit of the at least one circuit. The system is one of a memory array and a logic system, and a circuit of the at least one circuit is one of a memory cell of the memory array, a sense amplifier of the memory array and a path of the logic system. A method is also provided for providing a power supply voltage to at least one circuit of a system.
摘要:
The present invention provides for globally aligning microelectronic circuit systems, such as communication devices and chips, fabricated on or bonded to the front and back sides of one or more substrates to provide for wireless communications between the circuit systems through the one or more substrates. In one embodiment, two circuit systems situated on opposite sides of a substrate are aligned to provide for wireless communications between the two circuit systems through the substrate. In another embodiment, communication devices situated on one or more substrates are aligned to provide for wireless communications between the communication devices through the one or more substrates. In another embodiment, two chips situated on opposite sides of a transparent substrate are aligned to provide for wireless communications between the two chips through the transparent substrate.
摘要:
A device includes a substrate, at least one dielectric layer positioned on said substrate, and metalization positioned in an opening in the at least one dielectric layer and extending a predetermined distance towards the substrate from a surface which is substantially coplanar with a surface of the at least one dielectric layer. The metalization includes a low resistivity metal or alloy encapsulated by a refractory metal or alloy having a resistivity greater than that of the low resistivity metal or alloy and having a columnar structure. The metalization has a plurality of sides in cross-section, at least three sides of the plurality of sides being substantially formed of a refractory metal or alloy having a common composition, at least two sides of the plurality of sides extending substantially the predetermined distance, and all of the plurality of sides being formed within the opening in the at least one dielectric layer.
摘要:
A contact structure for a semiconductor device having a first refractory metal layer formed only at the bottom of a contact hole. The first refractory metal is selected from a group comprising titanium (Ti), titanium alloys or compounds such as Ti/TiN, tungsten (W), titanium/tungsten (Ti/W) alloys, or chromium (Cr) or tantalum (Ta) and their alloys or some other suitable material. A low resistivity layer comprising a single, binary or ternary metalization is deposited over the first refractory metal layer in the contact hole by a method such as PVD using evaporation or collimated sputtering. The low resistivity layer has side walls which taper inwardly toward one another with increasing height of the layer and the low resistivity layer does not contact the side walls of the contact hole. The low resistivity layer may be Al.sub.x Cu.sub.y (x+y=1; x.gtoreq.0, y.gtoreq.0), ternary alloys such as Al-Pd-Cu or multicomponent alloys such as Al-Pd-Nb-Au. A second refractory metal layer is deposited over the low resistivity layer. The second refractory metal layer may be tungsten, cobalt, nickel, molybdenum or alloys/compounds such as Ti/TiN. The first and second refractory metal layers completely encapsulate the low resistivity layer. The first and second refractory metal layers can comprise an alloy containing silicon with a higher incorporated silicon content near the top of the contact hold present as a distinct or graded composition than at a location closer to the bottom of the contact hole.
摘要:
Anti-reverse engineering techniques are provided. In one aspect, a method for forming at least one feature in an insulating layer is provided. The method comprises the following steps. Ions are selectively implanted in the insulating layer so as to form at least one implant region within the insulating layer, the implanted ions being configured to alter an etch rate through the insulating layer within the implant region. The insulating layer is etched to, at the same time, form at least one void both within the implant region and outside of the implant region, wherein the etch rate through the insulating layer within the implant region is different from an etch rate through the insulating layer outside of the implant region. The void is filled with at least one conductor material to form the feature in the insulating layer.
摘要:
There is provided a method that includes comparing a voltage level (Vs1) of a lower voltage supply bus to a voltage level (Vs2) of a higher voltage supply bus, and routing current from the lower voltage supply bus to the higher voltage supply bus if Vs2
摘要:
A metal-insulator-metal (MIM) capacitor including a metal layer, an insulating layer formed on the metal layer, at least a first opening and at least a second opening formed in the first insulating layer, a dielectric layer formed in the first opening, a conductive material deposited in the first and second openings, and a first metal plate formed over the first opening and a second metal plate formed over the second opening. A method for fabricating the MIM capacitor, includes forming the first metal layer, forming the insulating layer on the first metal layer, forming at least the first opening and at least the second opening in the first insulating layer, depositing a mask over the second opening, forming the dielectric layer in the first opening, removing the mask, depositing the conductive material in the first and second openings, and depositing a second metal layer over the first and second openings. MIM capacitors and methods of fabricating same are described, wherein the MIM capacitors are formed simultaneously with the BEOL interconnect and large density MIM capacitors are fabricated at low cost.
摘要:
Methods for designing a 6T SRAM cell having greater stability and/or a smaller cell size are provided. A 6T SRAM cell has a pair access transistors (NFETs), a pair of pull-up transistors (PFETs), and a pair of pull-down transistors (NFETs), wherein the access transistors have a higher threshold voltage than the pull-down transistors, which enables the SRAM cell to effectively maintain a logic “0” during access of the cell thereby increasing the stability of the cell, especially for cells during “half select.” Further, a channel width of a pull-down transistor can be reduced thereby decreasing the size of a high performance six transistor SRAM cell without effecting cell the stability during access. And, by decreasing the cell size, the overall design layout of a chip may also be decreased.