Abstract:
Embodiments of the disclosure include signal processing methods to precondition signals for transmission on a high speed bus. A preconditioning circuit is configured to receive a serialized data signal at an input node and to precondition the serialized output data signal to provide a preconditioned output signal at an output node. The preconditioning circuit may include a feedback circuit coupled between the input node and the output node that is configured to independently control both of a propagation delay between the output node and the input node and a magnitude of emphasis/de-emphasis applied to a signal at the output node for provision to the input node.
Abstract:
Disclosed herein is an apparatus that includes a first wiring layer including first and second conductive patterns extending in a second direction and coupled to source and drain regions, respectively, and a second wiring layer including third and fourth conductive patterns extending in the second direction and coupled to the first and second conductive patterns, respectively. The first conductive pattern has first and second sections arranged in the second direction, and the second conductive pattern has third and fourth sections arranged in the second direction. The first and fourth sections are arranged in a first direction, and the second and third sections are arranged in the first direction. The third conductive pattern covers the first section without covering the second section. The fourth conductive pattern covers the third section without covering the fourth section.
Abstract:
A device includes a data output terminal, an output buffer including n first transistors (n is a natural number greater than 1) connected in parallel with the data output terminal, and a calibration circuit to output an n-bit first code signal for controlling each of the n first transistors. In some embodiments, the calibration circuit includes a first counter circuit to output a k-bit second code signal (k is a natural number less than n), and a first code conversion circuit to convert the k-bit second code signal to the n-bit first code signal. Additional apparatus, systems, and methods are disclosed.
Abstract:
Disclosed herein is an apparatus that includes: a data terminal; a first output transistor connected between the data terminal and a first power line supplying a first power potential; a first tristate circuit including an output node connected to a control electrode of the first output transistor, a first pull-up transistor configured to drive the output node to a first logic level, and a first pull-down transistor configured to drive the output node to a second logic level; and a second tristate circuit including an output node connected to the control electrode of the first output transistor, a second pull-up transistor configured to drive the output node to the first logic level, and a second pull-down transistor configured to drive the output node to the second logic level. The second pull-up and pull-down transistors have a different threshold voltage from the first pull-up and pull-down transistors.
Abstract:
An apparatus includes an external terminal, an output circuit having an impedance corresponding to a code signal, and a calibration circuit configured to produce the code signal responsive to a comparison of a voltage at the external terminal with a reference voltage, the comparison performed by a first cycle period in a first mode and by a second cycle which is longer than the first cycle period in a second mode.
Abstract:
A device includes a cutting circuit that is coupled between power supply lines in series with first and second output circuits which drive an output terminal in a push-pull manner. Each of the first and second output circuits includes a plurality of output transistors. The cutting circuit is rendered non-conductive when each of the transistors in the first and second output circuits is rendered non-conductive.
Abstract:
A device includes a cutting circuit that is coupled between power supply lines in series with first and second output circuits which drive an output terminal in a push-pull manner. Each of the first and second output circuits includes a plurality of output transistors. The cutting circuit is rendered non-conductive when each of the transistors in the first and second output circuits is rendered non-conductive.
Abstract:
Embodiments of the disclosure include signal processing methods to precondition signals for transmission on a high speed bus. A preconditioning circuit is configured to receive a serialized data signal at an input node and to precondition the serialized output data signal to provide a preconditioned output signal at an output node. The pre-conditioning circuit may include a feedback circuit coupled between the input node and the output node that is configured to independently control both of a propagation delay between the output node and the input node and a magnitude of emphasis/de-emphasis applied to a signal at the output node for provision to the input node.
Abstract:
Apparatuses including output drivers and methods for providing output data signals are described. An example apparatus includes a high logic level driver, a low logic level driver, and an intermediate logic level driver. The high logic level driver is provided a first voltage and provides a high logic level voltage to a data terminal when activated. The low logic level driver is provided a second voltage and provides a low logic level voltage to the data terminal when activated. The intermediate logic level driver is provided a third voltage having a magnitude that is between the first and second voltages, and provides an intermediate logic level voltage to the data terminal when activated. Each of the high, low, and intermediate logic level drivers are configured to be respectively activated based on one or more of a plurality of control signals.
Abstract:
Apparatuses and methods for pre-emphasis control are described. An example apparatus includes a pull-up circuit and a pull-down circuit. The pull-up circuit is configured to receive a pull-up data activation signal and drive a data terminal to a pull-up voltage responsive to an active pull-up data activation signal. The pull-down circuit is configured to receive a pull-down activation signal and drive a data terminal to a pull-down voltage responsive to an active pull-down data activation signal. The example apparatus further includes a pre-emphasis circuit that includes a pre-emphasis timing control circuit configured to provide a timing control signal, and further includes a logic circuit. A pre-emphasis control signal based on at least one of the pull-up and pull-down data activation signals is provided to control providing pre-emphasis having a timing based on a mode of operation.