摘要:
A method of making a semiconductor device including a plurality of gate electrodes (6a, 6b, 6c, 6d) arranged on the surface of a semiconductor substrate (1) with insulating layers (5, 8) covering the top and the side walls of the gate electrodes. The spaces between the opposing side walls of adjacent gate electrodes on the surface of the element isolation region (2) are smaller than twice the thickness of the thinnest insulating layer (8) among the insulating layers of the side walls of the gate electrodes on the surface of the active regions. The space (14) between the gate electrodes on the element isolation region is filled with the insulating isolation layer (8) so that unevenness in the underlying portion on the element isolation region on which the conductive interconnection layer (10) to be formed is reduced, preventing thinning of the conductive interconnection layer and disconnection due to excessive etching of a resist film in patterning the conductive interconnection layer.
摘要:
A semiconductor device includes a plurality of gate electrodes (6a, 6b, 6c, 6d) arranged on the surface of a semiconductor substrate (1) with insulating layers (5, 8) covering the top and the side walls of the gate electrodes. The spaces between the opposing side walls of adjacent gate electrodes on the surface of the element isolation region (2) re smaller than twice the thickness of the thinnest insulating layer (8) among the insulating layers of the side walls of the gate electrodes on the surface of the active regions. The space (14) between the gate electrodes on the element isolation region is filled with the insulating isolation layer (8) so that unevenness in the underlying portion on the element isolation region on which the conductive interconnection layer (10) to be formed is reduced, preventing thinning of the conductive interconnection layer and disconnection due to excessive etching of a resin film in patterning the conductive interconnection layer.
摘要:
Disclosed is a semiconductor memory device in which defects in crystal in a junction region between a capacitor and a source/drain region, and a short channel effect of a transistor can be effectively reduced. The semiconductor memory device includes, on the side of a gate electrode at which the capacitor is connected, a sidewall formed to have a width larger than that of a sidewall on the side of a bit line, and a source/drain region to which the capacitor is connected and which is formed to have a diffusion depth larger than that of the opposite source/drain region. Therefore, the source/drain region effectively prevents defects in crystal from being produced in the junction region between the capacitor and the source/drain region connected to the capacitor and the sidewall effectively reduces the short channel effect.
摘要:
Disclosed is a semiconductor memory device in which defects in crystal in a junction region between a capacitor and a source/drain region, and a short channel effect of a transistor can be effectively reduced. The semiconductor memory device includes, on the side of a gate electrode at which the capacitor is connected, a sidewall formed to have a width larger than that of a sidewall on the side of a bit line, and a source/drain region to which the capacitor is connected and which is formed to have a diffusion depth larger than that of the opposite source/drain region. Therefore, the source/drain region effectively prevents defects in crystal from being produced in the junction region between the capacitor and the source/drain region connected to the capacitor and the sidewall effectively reduces the short channel effect.
摘要:
Disclosed is a semiconductor memory device in which defects in crystal in a junction region between a capacitor and a source/drain region, and a short channel effect of a transistor can be effectively reduced. The semiconductor memory device includes, on the side of a gate electrode at which the capacitor is connected, a sidewall formed to have a width larger than that of a sidewall on the side of a bit line, and a source/drain region to which the capacitor is connected and which is formed to have a diffusion depth larger than that of the opposite source/drain region. Therefore, the source/drain region effectively prevents defects in crystal from being produced in the junction region between the capacitor and the source/drain region connected to the capacitor and the sidewall effectively reduces the short channel effect.
摘要:
A method of manufacturing a semiconductor memory device having stacked capacitors is disclosed. After forming a capacitor isolating layer on an insulation layer and forming a contact hole in the insulation layer, a first conductive layer is formed on the insulating layer and the capacitor isolating layer and on an inner surface of the contact hole. The first conductive layer is partially etched and removed by using an etch-back technique to be isolated into a first capacitor portion and a second capacitor portion. A dielectric layer is formed on the first conductive layer. A second conductive layer is formed on the dielectric layer.
摘要:
The DRAM according to the present invention comprises so-called cylindrical stacked type capacitors. Each of the cylindrical stacked type capacitors comprises a base portion extending flat on an insulation layer and a surface of a substrate, and a cylindrical portion extending vertically and upwardly from the base portion. Then, the cylindrical portion vertically and upwardly protrudes from an outermost peripheral position of the base portion. As a result, an area where electrodes of the capacitor and capacitance of the capacitor can be increased. Furthermore, with a bit line located below an electrode layer of the capacitor, adjacent capacitors above the bit line can be isolated. Accordingly, it is possible to prevent the bit line contact from defining an isolation distance between the capacitors. Furthermore, an isolating layer patterned by etching is used as an isolating region between the capacitors and a lower electrode of the capacitor is formed along a surface of the isolating layer to form an isolation region between the adjacent capacitors. In addition, the lower electrode of the cylindrical stacked type capacitor is integrally formed by using a step formed in the insulation layer. As a result, the manufacturing step is simplified.
摘要:
A method of manufacturing a semiconductor memory device having stacked capacitors is disclosed. After forming a capacitor isolating layer on an insulation layer and forming a contact hole in the insulation layer, a first conductive layer is formed on the insulating layer and the capacitor isolating layer and on an inner surface of the contact hole. The first conductive layer is partially etched and removed by using an etch-back technique to be isolated into a first capacitor portion and a second capacitor portion. A dielectric layer is formed on the first conductive layer. A second conductive layer is formed on the dielectric layer.
摘要:
A dynamic random access memory (DRAM) is disclosed that can effectively prevent the formation of steps in the boundary region of a memory cell array 101 and a peripheral circuit 102, even in high integrated devices. This DRAM includes a double peripheral wall 20 of peripheral walls 20a and 20b at the boundary region of the memory cell array 101 and the peripheral circuit 102 of a P type silicon substrate 1, extending vertically upwards from the P type silicon substrate 1. The upper surfaces of the devices formed on the memory cell array and the peripheral circuit 102 in forming devices on the memory cell array 101 and the peripheral circuit 102 are substantially planarized, by virture of the double peripheral wall 20, to effectively prevent steps from being generated in the boundary region of the memory cell array 101 and the peripheral circuit 102, even in high integrated devices.
摘要:
The DRAM according to the present invention comprises so-called cylindrical stacked type capacitors. Each of the cylindrical stacked type capacitors comprises a base portion extending flat on an insulation layer and a surface of a substrate, and a cylindrical portion extending vertically and upwardly from the base portion. Then, the cylindrical portion vertically and upwardly protrudes from an outermost peripheral position of the base portion. As a result, an area where electrodes of the capacitor and capacitance of the capacitor can be increased. Furthermore, with a bit line located below an electrode layer of the capacitor, adjacent capacitors above the bit line can be isolated. Accordingly, it is possible to prevent the bit line contact from defining an isolation distance between the capacitors. Furthermore, an isolating layer patterned by etching is used as an isolating region between the capacitors and a lower electrode of the capacitor is formed along a surface of the isolating layer to form an isolation region between the adjacent capacitors. In addition, the lower electrode of the cylindrical stacked type capacitor is integrally formed by using a step formed in the insulation layer. As a result, the manufacturing step is simplified.