摘要:
Methods and apparatus for controlling film deposition using a linear plasma source are described herein. The apparatus include a showerhead having openings therein for flowing a gas therethrough, a conveyor to support one or more substrates thereon disposed adjacent to the showerhead, and a power source for ionizing the gas. The ionized gas can be a source gas used to deposit a material on the substrate. The deposition profile of the material on the substrate can be adjusted, for example, using a gas-shaping device included in the apparatus. Additionally or alternatively, the deposition profile may be adjusted by using an actuatable showerhead. The method includes exposing a substrate to an ionized gas to deposit a film on the substrate, wherein the ionized gas is influenced with a gas-shaping device to uniformly deposit the film on the substrate as the substrate is conveyed proximate to the showerhead.
摘要:
Methods deposit a film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. Flows of first precursor deposition gases are provided to the substrate processing chamber. A first high-density plasma is formed from the flows of first deposition gases to deposit a first portion of the film over the substrate and within the gap with a first deposition process that has simultaneous deposition and sputtering components until after the gap has closed. A sufficient part of the first portion of the film is etched back to reopen the gap. Flows of second precursor deposition gases are provided to the substrate processing chamber. A second high-density plasma is formed from the flows of second precursor deposition gases to deposit a second portion of the film over the substrate and within the reopened gap with a second deposition process that has simultaneous deposition and sputtering components.
摘要:
Methods are provided for depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A process gas having a silicon-containing gas, an oxygen-containing gas, and a fluent gas is flowed into the substrate processing chamber. The fluent gas is introduced into the substrate processing chamber at a flow rate of at least 500 sccm. A plasma is formed having an ion density of at least 1011 ions/cm3 from the process gas to deposit a first portion of the silicon oxide film over the substrate and into the gap. Thereafter, the deposited first portion is exposed to an oxygen plasma having at least 1011 ions/cm3. Thereafter, a second portion of the silicon oxide film is deposited over the substrate and into the gap.
摘要翻译:提供了用于在设置在基板处理室中的基板上沉积氧化硅膜的方法。 基板在相邻的凸起表面之间形成间隙。 具有含硅气体,含氧气体和流动气体的工艺气体流入基板处理室。 将流体气体以至少500sccm的流量引入基板处理室。 形成等离子体,其具有距工艺气体至少10×10 11 / cm 3以上的离子密度,以将氧化硅膜的第一部分沉积在衬底上并且进入 差距。 此后,将沉积的第一部分暴露于具有至少10×10 11 / cm 3以上的氧等离子体。 此后,氧化硅膜的第二部分沉积在衬底上并进入间隙。
摘要:
Methods are disclosed of depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A first portion of the silicon oxide film is deposited over the substrate and within the gap using a high-density plasma process. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched back. This includes flowing a halogen precursor through a first conduit from a halogen-precursor source to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the portion has been etched back. Thereafter, a halogen scavenger is flowed to the substrate processing chamber to react with residual halogen in the substrate processing chamber. Thereafter, a second portion of the silicon oxide film is deposited over the first portion of the silicon oxide film and within the gap using a high-density plasma process.
摘要:
A processing chamber is seasoned by providing a flow of season precursors to the processing chamber. A high-density plasma is formed from the season precursors by applying at least 7500 W of source power distributed with greater than 70% of the source power at a top of the processing chamber. A season layer having a thickness of at least 5000 Å is deposited at one point using the high-density plasma. Each of multiple substrates is transferred sequentially into the processing chamber to perform a process that includes etching. The processing chamber is cleaned between sequential transfers of the substrates.
摘要:
Methods are disclosed for depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A silicon-containing gas, an oxygen-containing gas, and a fluent gas are flowed into the substrate processing chamber. A high-density plasma is formed from the silicon-containing gas, the oxygen-containing gas, and the fluent gas. A first portion of the silicon oxide film is deposited using the high-density plasma at a deposition rate between 900 and 6000 Å/min and with a deposition/sputter ratio greater than 30. The deposition/sputter ratio is defined as a ratio of a net deposition rate and a blanket sputtering rate to the blanket sputtering rate. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched. A second portion of the silicon oxide film is deposited over the etched portion of the silicon oxide film.
摘要:
A processing chamber is seasoned by providing a flow of season precursors to the processing chamber. A high-density plasma is formed from the season precursors by applying at least 7500 W of source power distributed with greater than 70% of the source power at a top of the processing chamber. A season layer having a thickness of at least 5000 Å is deposited at one point using the high-density plasma. Each of multiple substrates is transferred sequentially into the processing chamber to perform a process that includes etching. The processing chamber is cleaned between sequential transfers of the substrates.
摘要:
A film is deposited on a substrate disposed in a substrate processing chamber. The substrate has a trench formed between adjacent raised surfaces. A first portion of the film is deposited over the substrate from a first gaseous mixture flowed into the process chamber by chemical-vapor deposition. Thereafter, the first portion is etched by flowing an etchant gas having a halogen precursor, a hydrogen precursor, and an oxygen precursor into the process chamber. Thereafter, a second portion of the film is deposited over the substrate from a second gaseous mixture flowed into the processing chamber by chemical-vapor deposition.
摘要:
Methods are disclosed of depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A first portion of the silicon oxide film is deposited over the substrate and within the gap using a high-density plasma process. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched back. This includes flowing a halogen precursor through a first conduit from a halogen-precursor source to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the portion has been etched back. Thereafter, a halogen scavenger is flowed to the substrate processing chamber to react with residual halogen in the substrate processing chamber. Thereafter, a second portion of the silicon oxide film is deposited over the first portion of the silicon oxide film and within the gap using a high-density plasma process.
摘要:
A film of fluorine-doped silicon glass (“FSG”) is exposed to a nitrogen-containing plasma to nitride a portion of the FSG film. In one embodiment, the FSG film is chemically-mechanically polished prior to nitriding. The nitriding process is believed to scavenge moisture and free fluorine from the FSG film. The plasma can heat the FSG film to about 400° C. for about one minute to incorporate about 0.4 atomic percent nitrogen to a depth of nearly a micron. Thus, the nitriding process can passivate the FSG film deeper than a via depth.