摘要:
A process for reducing intrinsic stress and/or hydrogen content of a SiOx film grown by chemical vapor deposition. The process is applicable to plasma-enhanced and electron cyclotron resonance chemical vapor deposition of silicon dioxide wherein a vapor phase etchant is introduced while growing the silicon dioxide film. The presence of the etchant during the plasma deposition process allows for selective removal of high energy silicon dioxide molecules in the growing film thus reducing intrinsic stress within the film. The use of halogen etchants further reduces the amount of hydrogen present as hydroxyl within the film.
摘要:
A process for reducing intrinsic stress and/or hydrogen content of a SiO.sub.x film grown by ECR chemical vapor deposition, wherein a vapor phase etchant is introduced while growing the silicon dioxide film. The presence of the etchant during the plasma deposition process allows for selective removal of high energy silicon dioxide molecules in the growing film thus reducing intrinsic stress within the film. The use of halogen etchants further reduces the amount of hydrogen present as hydroxyl within the film.
摘要:
A semiconductor system includes: providing a dielectric layer; providing a conductor in the dielectric layer, the conductor exposed at the top of the dielectric layer; capping the exposed conductor; and modifying the surface of the dielectric layer, modifying the surface of the dielectric layer, wherein modifying the surface includes cleaning conductor ions from the dielectric layer by dissolving the conductor in a low pH solution, dissolving the dielectric layer under the conductor ions, mechanically enhanced cleaning, or chemisorbing a hydrophobic layer on the dielectric layer.
摘要:
A semiconductor system includes: providing a dielectric layer; providing a conductor in the dielectric layer, the conductor exposed at the top of the dielectric layer; capping the exposed conductor; and modifying the surface of the dielectric layer, modifying the surface of the dielectric layer, wherein modifying the surface includes cleaning conductor ions from the dielectric layer by dissolving the conductor in a low pH solution, dissolving the dielectric layer under the conductor ions, mechanically enhanced cleaning, or chemisorbing a hydrophobic layer on the dielectric layer.
摘要:
A rinse system including providing a chemical rinse including a corrosion inhibitor, and rinsing a wafer with the chemical rinse reducing defects on silicon and a dielectric, and maintaining integrity of a metal.
摘要:
A gas mixture preheated to high temperatures using an oxy-fuel, an oxygen-enriched air-fuel or an air-fuel burner is used to devolatilize and partially oxidize carbonaceous feedstock, thereby producing an active residual char that can be used in applications utilizing activated carbon. Use of hot gas and ground carbonaceous feedstock allows the equipment to be minimized, thereby allowing the activated carbon to be produced at or near points of use, for example the production of activated char at or near utility boilers for use in the reduction of mercury emissions from flue gas streams.
摘要:
A gas mixture preheated to high temperatures using an oxy-fuel, an oxygen-enriched air-fuel or an air-fuel burner is used to devolatilize and partially oxidize carbonaceous feedstock, thereby producing an active residual char that can be used in applications utilizing activated carbon. Use of hot gas and ground carbonaceous feedstock allows the equipment to be minimized, thereby allowing the activated carbon to be produced at or near points of use, for example the production of activated char at or near utility boilers for use in the reduction of mercury emissions from flue gas streams.
摘要:
A gap filling process of depositing a film of SiO.sub.2 in gaps on a substrate by generating plasma in a process chamber by energizing gas containing silicon, oxygen and a heavy noble gas such as xenon or krypton. The gaps can have widths below 0.5 .mu.m and aspect ratios higher than 1.5:1. A substrate is supported on a substrate support wherein a gas passage supplies a temperature control gas into a space between opposed surfaces of the substrate and the substrate support, and the film is grown in the gaps on the substrate by contacting the substrate with the plasma. The silicon reactant can be SiH.sub.4 and the oxygen reactant can be pure oxygen gas supplied by O.sub.2 /SiH.sub.4 ratio of .ltoreq.1.05. The plasma can be a high density plasma produced in an ECR or TCP reactor and the substrate can be a silicon wafer including aluminum conductor lines.