摘要:
The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a light-emitting diode (LED) die. The LED die is a vertical LED die in some embodiments. The LED die includes a substrate. A p-doped III-V compound layer and an n-doped III-V compound layer are each disposed over the substrate. A multiple quantum well (MQW) layer is disposed between the p-doped III-V compound layer and the n-doped III-V compound layer. The p-doped III-V compound layer includes a first region having a non-exponential doping concentration characteristic and a second region having an exponential doping concentration characteristic. In some embodiments, the second region is formed using a lower pressure than the first region.
摘要:
The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a light-emitting diode (LED) die. The LED die is a vertical LED die in some embodiments. The LED die includes a substrate. A p-doped III-V compound layer and an n-doped III-V compound layer are each disposed over the substrate. A multiple quantum well (MQW) layer is disposed between the p-doped III-V compound layer and the n-doped III-V compound layer. The p-doped III-V compound layer includes a first region having a non-exponential doping concentration characteristic and a second region having an exponential doping concentration characteristic. In some embodiments, the second region is formed using a lower pressure than the first region.
摘要:
The present disclosure involves a method of fabricating a semiconductor device. A surface of a silicon wafer is cleaned. A first buffer layer is then epitaxially grown on the silicon wafer. The first buffer layer contains an aluminum nitride (AlN) material. A second buffer layer is then epitaxially grown on the first buffer layer. The second buffer layer includes a plurality of aluminum gallium nitride (AlxGa1-xN) sub-layers. Each of the sub-layers has a respective value for x that is between 0 and 1. A value of x for each sub-layer is a function of its position within the second buffer layer. A first gallium nitride (GaN) layer is epitaxially grown over the second buffer layer. A third buffer layer is then epitaxially grown over the first GaN layer. A second GaN layer is then epitaxially grown over the third buffer layer.
摘要:
The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
摘要:
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
摘要:
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
摘要:
The present disclosure involves a method of fabricating a semiconductor device. A surface of a silicon wafer is cleaned. A first buffer layer is then epitaxially grown on the silicon wafer. The first buffer layer contains an aluminum nitride (AlN) material. A second buffer layer is then epitaxially grown on the first buffer layer. The second buffer layer includes a plurality of aluminum gallium nitride (AlxGa1−xN) sub-layers. Each of the sub-layers has a respective value for x that is between 0 and 1. A value of x for each sub-layer is a function of its position within the second buffer layer. A first gallium nitride (GaN) layer is epitaxially grown over the second buffer layer. A third buffer layer is then epitaxially grown over the first GaN layer. A second GaN layer is then epitaxially grown over the third buffer layer.
摘要翻译:本公开涉及制造半导体器件的方法。 清洁硅晶片的表面。 然后在硅晶片上外延生长第一缓冲层。 第一缓冲层含有氮化铝(AlN)材料。 然后在第一缓冲层上外延生长第二缓冲层。 第二缓冲层包括多个氮化镓铝(Al x Ga 1-x N)子层。 每个子层具有在0和1之间的x的相应值。每个子层的x的值是其在第二缓冲层内的位置的函数。 在第二缓冲层上外延生长第一氮化镓(GaN)层。 然后在第一GaN层上外延生长第三缓冲层。 然后在第三缓冲层上外延生长第二GaN层。
摘要:
The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
摘要:
The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a plurality of layers. A current blocking layer is embedded in one of the plurality of layers. The current blocking layer is a doped layer. The present disclosure also involves a method of fabricating a light-emitting diode (LED). As a part of the method, an LED is provided. The LED includes a plurality of layers. A patterned mask is then formed over the LED. The patterned mask contains an opening. A dopant is introduced through the opening to a layer of the LED through either an ion implantation process or a thermal diffusion process. As a result of the dopant being introduced, a doped current blocking component is formed to be embedded within the layer of the LED.
摘要:
A method for fabricating a semiconductor layer comprising: a) growing a semiconductor layer on a foreign substrate; b) forming at least one opening on the semiconductor layer, wherein the opening exposes the interface between the semiconductor layer and the foreign substrate; and c) removing at least part of the semiconductor solid state material along the interface between the semiconductor layer and the foreign substrate. The removing step c) is preferably achieved by selective interfacial chemical etching. The semiconductor layer may be utilized as a substrate for fabrication of a wide variety of electronic and opto-electronic devices and integrated circuitry products.